Final Results From Phase 3 Portion in Phase 2/3 Study of Elbasvir/Grazoprevir in Hepatitis C Genotype 1-Infected **Japanese Patients**

Background

- Broad activity versus most hepatitis C virus (HCV) genotypes in vitro¹⁻³
- Retains in vitro activity against many clinically relevant resistanceassociated variants (RAVs)¹⁻³
- Efficacious in treatment-naïve and treatment-experienced cirrhotic and noncirrhotic patients with HCV, in HIV/HCV coinfected patients, and chronic kidney disease (CKD) stage 4/5 patients with HCV⁴⁻⁸
- All-oral, once-daily regimen
- Received approval as ZEPATIER[™] for the treatment of chronic hepatitis C (CHC) genotypes 1 or 4 infection in US and EU
- 1. Summa V, et al. Antimicrobial Agent Chemother. 2012;56:4161-4167.
- 2. Coburn CA, et al. Chem Med Chem. 2013;8(12):1930-1940
- 3. Harper S, et al. ACS Med Chem Lett. 2012;3(4):332-336
- 4. Zeuzem S, et al. Ann Intern Med. 2015;163(1):1-13.
- 5. Lawitz E, et al. Lancet. 2015;385(9973):1075-1086
- 6. Rockstroh J, et al. Lancet HIV. 2015;2(8):e319-e327
- 7. Sulkowski M. et al. Lancet. 2015;385(9973);1087-1097
- 8. Roth D, et al. Lancet. 2015;386(10003):1537-1545.

Aim

- The study was conducted as a Phase 2/3 design. The dose of grazoprevir (GZR) (100 mg) was selected based on the results of the Phase 2 portion of the study
- The aim of the Phase 3 portion of the Phase 2/3 study was to evaluate the efficacy and safety of this drug combination in genotype 1 (GT1)-infected treatment-naïve or IFN-experienced Japanese chronic hepatitis C (CHC) patients with or without cirrhosis
- In this report, we present SVR12 (sustained virologic response) 12 weeks after completion of therapy) in the immediate-treatment group (ITG) arm, the deferred-treatment group (DTG) arm, and compensated cirrhosis arm
- Also, we present SVR24 data from all 3 arms

Methods

Figure 2. Phase 3 study design

EBR: elbasvir; GZR: grazoprevir

- Phase 3, randomized, placebo-controlled, multisite, double-blind study
- CHC patients without cirrhosis were randomized in a 3:1 ratio to the ITG arm or DTG arm and received elbasvir (EBR) 50 mg + GZR 100 mg QD or placebo for 12 weeks
- After a 4-week follow-up, each patient was unblinded and placebo recipients received open-label EBR + GZR
- CHC patients with compensated cirrhosis received open-label EBR + GZR for 12 weeks

Methods (continued)

Key inclusion criteria

- GT1-infected Japanese CHC subject
- Without cirrhosis or with compensated cirrhosis
- 20-80 years of age; male and female
- Treatment naïve or treatment experienced for interferon-based therapy without direct-acting antivirals
- HCV RNA at the time of screening: ≥5.0 log IU/mL
- Key exclusion criteria
- Coinfection with hepatitis B virus or HIV
- Creatinine clearance is less than 50 mL/min

Key endpoints

- Efficacy (full analysis set [FAS])
- Primary endpoint: SVR12 (HCV RNA <15 IU/mL at follow-up week 12 [Roche COBAS TaqMan HCV assay, ver.2.0])
- Secondary endpoint: SVR24
- Exploratory endpoint: prevalence and impact of baseline NS3 and NS5A RAVs on SVR12
- Safety (all subjects as treated [ASaT])
- All data collected from the first study medication to FU4
- Adverse events (AEs)
- Laboratory abnormalities

Results

Table 1. Demographics

		Noncirrhotic				
	Factors	EBR + GZR (Immediate)	Placebo (Deferred)			
	Total		227	74*		
Gender		Male, n : Female, n	87 : 140	21 : 53		
	Age	Median years				
	-	(range)	63 (21-80)	63 (34-80		
		<65, n (%)	123 (54%)	40 (54%)		
		≥65, n (%)	104 (46%)	34 (46%)		
	HCV subtype,	GT1a	4 (2%)	1 (1%)		
	n (%)	GT1b	223 (98%)	73 (99%)		
	Prior treatment,	Naïve	149 (66%)	49 (66%)		
	n (%)	Intolerant to prior P/R	11 (5%)	3 (4%)		
		Relapse to prior P/R	40 (18%)	13 (18%)		
		Nonresponse to prior P/R	27 (12%)	9 (12%)		
	IL28B, n (%)	Major (CC)	131 (58%)	44 (60%)		
	(rs12979860)	Minor (TC)	86 (38%)	29 (39%)		
		Minor (TT)	10 (4%)	1 (1%)		
	Baseline HCV RNA, median log IU/mL (range)		6.3 (4.7-7.2)	6.3 (4.8-7.3		

*73 received the deferred active treatment, as 1 subject discontinued the study during the initial treatment period.

Fumitaka Suzuki¹; Yoshiyasu Karino²; Kazuaki Chayama³; Norifumi Kawada⁴; Takeshi Okanoue⁵; Yoshito Itoh⁶; Satoshi Mochida⁷; Hidenori Toyoda⁸; Hitoshi Yoshiji⁹; Shintaro Takaki¹⁰; Naoyoshi Yatsuzuka¹¹; Etsuo Yodoya¹¹; Go Fujimoto¹¹; Janice Wahl¹²; Michael Robertson¹²; Stuart Black¹²; Hiromitsu Kumada¹

¹Department of Hepatology, Toranomon Hospital, Tokyo, Japan; ²Department of Gastroenterology, Sapporo Kosei General Hospital, Hokkaido, Japan; ³Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima, Japan; ⁴Department of Hepatology, Osaka City University Medical School, Osaka, Japan; ⁵Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan; ⁶Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan; ⁷Department of Gastroenterology and Hepatology, Saitama Medical University, Saitama, Japan; ⁸Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan; ⁹Third Department of Internal Medicine, Nara Medical University, Nara, Japan; ¹⁰Department of Gastroenterology/Liver Center, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital, Hiroshima, Japan; ¹¹MSD K.K., Tokyo, Japan; ¹²Merck & Co., Inc., Kenilworth, NJ, USA

Cirrhotic
EBR + GZR
35
18 : 17
65 (43-79)
16 (46%)
19 (54%)
1 (3%)
34 (97%)
20 (57%)
3 (9%)
6 (17%)
/
6 (17%)
22 (63%)
13 (37%)
0 (0%)
6.4 (5.1-7.1)

Virologic response

- Overall SVR12 was 96.7% in the combined ITG, DTG, and cirrhosis population receiving EBR/GZR for 12 weeks (Figure 3) - 7/335 (2.1%) virologic failures (relapse)
- Overall SVR24 was 96.4% (Figure 4)
- One patient relapsed between follow-up weeks 12 and 24

Figure 3. SVR12 (FAS)

Discontinued due to serious AEs (cardiac sarcoidosis and cerebral infarction) ITG: immediate treatment group arm; DTG: active treatment period in deferred treatment group arm.

FAS includes all patients who received ≥1 dose of study medication; modified FAS (mFAS) excludes patients who discontinued early and/or patient who was lost to follow-up.

Figure 4. SVR24 (FAS)

[†]Discontinued due to serious AEs (cardiac sarcoidosis and cerebral infarction). [‡]One patient relapsed just after FU12; detected HCV RNA <15 IU/mL at FU12 and confirmed HCV RNA positive 2 weeks after.

ITG: immediate treatment group arm; DTG: active treatment period in deferred treatment group arm. FAS includes all patients who received ≥1 dose of study medication; mFAS excludes patients who discontinued early and/or patient who was lost to follow-up.

• Subgroup analysis is shown in **Figure 5**

Figure 5. SVR12 subgroup analysis (FAS)

Subgroup		Patients, n/N	SVR12 (95% CI), %	
Total		324/335	96.7 (94.2-98.3)	+
Gender	Male	121/125	96.8 (92.0-99.1)	
	Female	203/210	96.7 (93.3-98.6)	
Age	<65 y	176/179	98.3 (95.2-99.7)	++
	≥65 y, <75 y	110/116	94.8 (89.1-98.1)	
	≥75 y	38/40	95.0 (83.1-99.4)	_
IL28B genotype	Major	190/197	96.4 (92.8-98.6)	
(rs12979860)	Minor	134/138	97.1 (92.7-99.2)	
Prior	Naïve	211/218	96.8 (93.5-98.7)	
treatment	Intolerant	15/17	88.2 (63.6-98.5)	<
	Relapse	59/59	100 (93.9-100)	
	Nonresponse	39/41	95.1 (83.5-99.4)	
HCV	1a	6/6	100 (54.1-100)	↓ ↓ ↓ ↓
genotype	1b	318/329	96.7 (94.1-98.3)	+
Baseline HCV	≤800,000	75/76	98.7 (92.9-100)	
RNA (IU/mL)	>800,000	249/259	96.1 (93.0-98.1)	-+

Results (continued)

- The prevalence of baseline NS3 RAVs[†] was 1.8% (6/331). There was no impact of baseline NS3 RAVs to SVR12 rates [†]NS3 RAVs: any variants at positions 155, 156, and 168 detected by population sequencing (sensitivity threshold: 25%).
- The prevalence of baseline NS5A RAVs was 29.6% (98/331). SVR12 rates in GT1 subjects without or with baseline NS5A RAVs were 99.1% (231/233) or 94.9% (93/98), respectively. Regardless of presence of baseline NS5A RAVs, the SVR12 in GT1b subjects still exceeded 94% (**Table 2**)

Table 2. Impact of NS5A RAVs[‡] at baseline

	SVR12 (%)					
Population	Overall Efficacy in Subjects With Sequence	NS5A RAVs Not Detected	NS5A RAVs Detected			
Overall	324/331† (97.7%)	231/233† (99.1%)	93/98† (94.9%)			
By genotype and subtype						
GT1a	6/6 (100.0%)	4/4 (100.0%)	2/2 (100.0%)			
GT1b	318/325 (97.8%)	227/229 (99.1%)	91/96 (94.8%)			

SVR12 (%) = number of subjects achieving SVR12/total number of subjects, with RAVs selected in each category.

[†]Resistance analysis population: patients who achieved SVR12 or who met virologic failure criteria. *NS5A RAVs: any variant at positions 28, 30, 31, and 93 detected by population sequencing (sensitivity threshold: 25%).

Safety

- The frequency and nature of AEs were similar in patients receiving EBR/ GZR (ITG + DTG, ITG or cirrhosis) and placebo (Table 3)
- Drug-related AEs were slightly more frequent on EBR/GZR

Table 3. Adverse events (≥5%) through FU4 (ASaT)

	Noncirrhotic				Cirrhotic			
	EBR + GZR (ITG + DTG)		EBR + GZR (ITG)		Placebo (DTG)			
							EBR + GZR	
	n	(%)	n	(%)	n	(%)	n	(%)
Subjects in population	300		227		74		35	
With one or more AEs	195	(65.0)	147	(64.8)	50	(67.6)	28	(80.0)
With drug-related [†] AEs	77	(25.7)	58	(25.6)	14	(18.9)	13	(37.1)
With serious AEs	12	(4.0)	11	(4.8)	1	(1.4)	0	(0.0)
With drug-related [†] serious								
AEs	2	(0.7)	2	(0.9)	0	(0.0)	0	(0.0)
Nasopharyngitis	47	(15.7)	34	(15.0)	12	(16.2)	5	(14.3)
Alanine aminotransferase								
increased	16	(5.3)	13	(5.7)	1	(1.4)	5	(14.3)
Aspartate aminotransferase								
increased	14	(4.7)	11	(4.8)	2	(2.7)	5	(14.3)
Diarrhea	15	(5.0)	11	(4.8)	2	(2.7)	3	(8.6)
Constipation	12	(4.0)	8	(3.5)	3	(4.1)	3	(8.6)
Headache	12	(4.0)	10	(4.4)	1	(1.4)	2	(5.7)
Rash	9	(3.0)	9	(4.0)	1	(1.4)	3	(8.6)
Malaise	11	(3.7)	7	(3.1)	3	(4.1)	2	(5.7)
Blood creatine phosphokinase								
increased	9	(3.0)	6	(2.6)	4	(5.4)	1	(2.9)
Anemia	2	(0.7)	1	(0.4)	0	(0.0)	2	(5.7)

Every subject is counted a single time for each applicable row and column A specific AE appears on this report only if its incidence in one or more of the columns meets the incidence criterion in the report title, after rounding. [†]Determined by investigator to be related to the drug.

- 6.0% (20/335) of patients receiving EBR/GZR had drug-related liver transaminase elevation (Figure 6), including approximately 1.8% (6/335) with late liver transaminase elevation (>5×ULN) after initially normalizing on treatment
- Late ALT/AST elevation events were generally detected at TW8 and transient. Five of 6 patients recovered during continued administration of EBR/GZR; the remaining patient recovered after withdrawal of study drug
- No symptoms such as gastrointestinal disorders or rash developed; no abnormalities in bilirubin total, eosinophil counts, or INR accompanied by late ALT/AST elevation were noted
- All patients who experienced ALT elevation reached SVR24

Upper limit of normal range: 40 (IU/L

TW6

TW/8

Conclusion

• SVR12 and SVR24 was achieved by over 96% of patients

TW2 TW4

SCR Day 1

TW1

- High efficacy for GT1-infected Japanese CHC patients
- High efficacy also in compensated cirrhosis
- No on-treatment virologic failures occurred
- Baseline NS3 and NS5A RAVs had no clinically remarkable impact on the efficacy
- EBR/GZR was largely safe and well tolerated
- Low rates of AEs; comparable to placebo
- Low rates of late ALT/AST elevations; the events were transient and reversible, no symptoms developed, no other accompanying liver function test abnormalities
- Coadminstration of EBR/GZR is an important treatment option in GT1-infected HCV patients, including patients with compensated cirrhosis

Disclosures

- Fumitaka Suzuki Speaking and Teaching: BMS
- Yoshiyasu Karino Speaking and Teaching: BMS K.K.
- Kazuaki Chayama Advisory Committees or Review Panels: Mitsubishi Tanabe, Taisho Toyama; Consulting: AbbVie; Grant/Research Support: Ajinomoto, AbbVie, Aska, Astellas, Bristol Squibb, Daiichi Sankyo, Sumitomo Dainippon, Eisai, GlaxoSmithKline, Mitsubishi Tanabe, Nippon Kayaku, Otsuka, Sogo Rinsho Médéfi, Taiho, Takeda, Toray, Torii, Tsumura, Zeria; Speaking and Teaching: Abbott, AbbVie, Ajinomoto, Astellas, AstraZeneca, Bayer, Bristol Squibb, Chugai, Sumitomo Dainippon, Eidia, Eisai, Gilead, GlaxoSmithKline, JIMRO, Johnson & Johnson, Mitsubishi Tanabe
- Norifumi Kawada Grant/Research Support: Chugai; Speaking and Teaching: MSD, BMS, Gilead, AbbVie
- Yoshito Itoh Grant/Research Support: Merck Sharp & Dohme, Bristol-Myers Squibb, Gilead Sciences, AbbVie, Ono Pharmaceutical, Eisai, Daiichi Sankyo, Astellas Pharma, Takeda Pharmaceutical, Ajinomoto Pharmaceuticals, Sumitomo Dainippon Pharma, Fujifilm Medical, Otsuka Pharmaceutical; Speaking and Teaching: Merck Sharp & Dohme, Bristol-Myers Squibb, Gilead Sciences, AbbVie
- Satoshi Mochida Grant/Research Support: Chugai, MSD, Toray Medical, BMS, Sumitomo Dainippon Pharma, Ajinomoto Pharmaceuticals, AbbVie, A2 Health Care, Eisai; Speaking and Teaching: MSD, Toray Medical, BMS, Tanabe Mitsubishi, Sumitomo Dainippon Pharma, Ajinomoto Pharmaceuticals, Gilead, AbbVie
- Naoyoshi Yatsuzuka Employment: MSD K.K.
- Etsuo Yodoya Employment: MSD K.K
- Go Fujimoto Employment: MSD K.K.; Stock Shareholder: Merck
- Janice Wahl Employment: Merck
- Michael Robertson Employment: Merck; Stock Shareholder: Merck
- Stuart Black Employment: Merck
- Hiromitsu Kumada Speaking and Teaching: Bristol-Myers Squibb, Pharma International, MSD, AbbVie, GlaxoSmithkline, Gilead Sciences Sumitomo Dainippon Pharma

