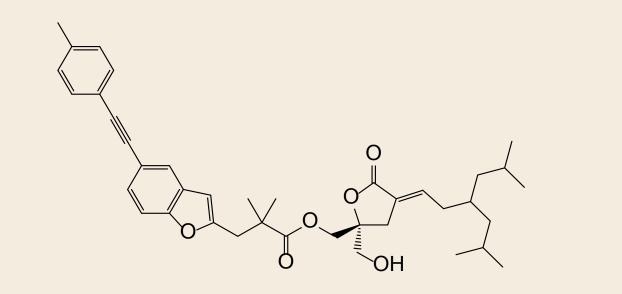
PKC Agonist Exposure Sufficient to Activate T Cells In Vivo also Causes Coagulopathy

Background

- Activation of latent HIV reservoir is part of a strategy for HIV cure as it should enable the elimination of infected cells by immune-mediated clearance mechanisms and facilitate long-term remission or cure.¹
- Protein kinase C (PKC) agonists, such as Prostratin and Bryostatin, are highly effective at activating latent HIV.²⁻³
- DAG lactones are a class of small molecules that activate PKCs.⁴
- Effective use of PKC agonists is limited by their severe toxicity, with a mechanism not clearly elucidated.5-6

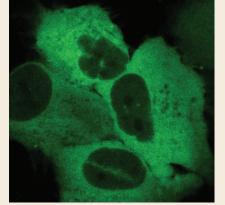
Objectives


- To elucidate the primary mechanism of toxicity of the novel small molecule PKC agonist, C-232A.
- To develop a predictive in vitro screening platform to inform on potential toxicity of future PKC agonists.

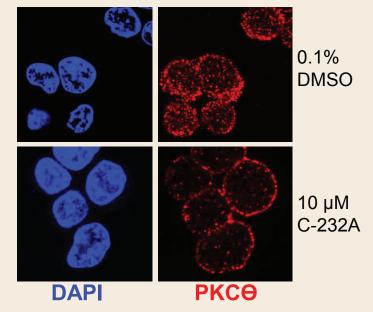
Methods

- PKC translocation by small molecule agonists was assessed by fluorescent microscopy of GFP-labeled PKC in A549 cells and by immunostaining endogenous PKC in Jurkat cells.
- Ex vivo activation of HIV transcription by qPCR and CD69 expression was assessed by FACS in CD4+ T cells treated with PKC agonists from ART-suppressed HIV-infected donors.
- Dose escalation PK/PD studies were conducted in rats and rhesus macaques by IV infusion of C-232A.
- Systemic exposure was determined by measuring C-232A plasma levels with an LC-MS/MS method.
- Activation markers and cytokines were measured by flow cytometry and multiplex immunoassay.
- Investigational toxicology endpoints were assessed including hematology, coagulation and anatomic pathology.
- Flow cytometry and light transmission aggregometry were utilized to assess in vitro platelet activation and function.

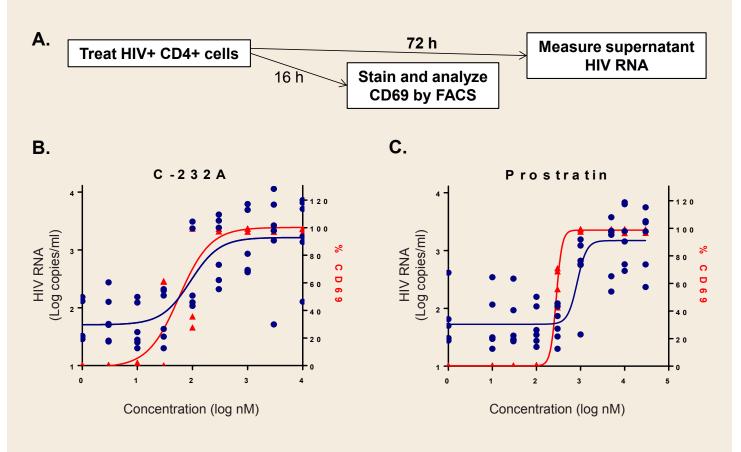
Results


Figure 1. Structure of the novel small molecule PKC agonist, C-232A.

Results (Cont'd)

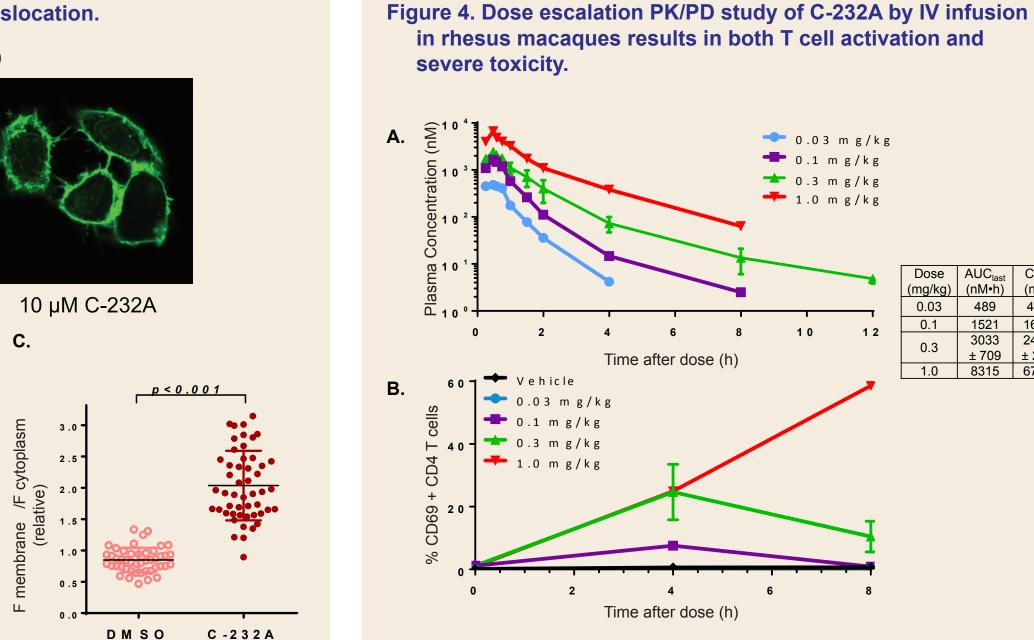

Figure 2. C-232A induces PKC-θ translocation.

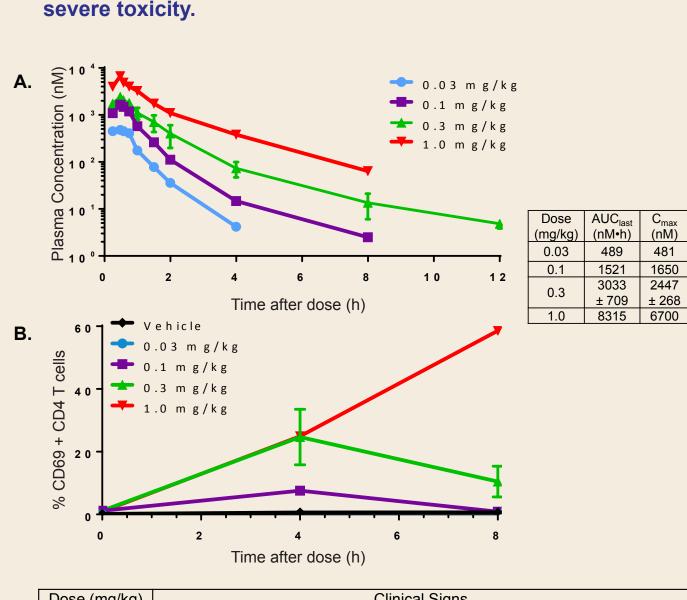
A. A549 cell expressing tGFP-labeled PKC-θ



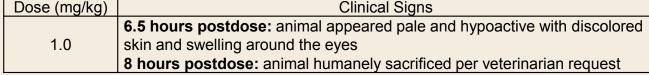
B. Endogenous PKC-θ in Jurkat cells.

- A. Confocal microscopy images of A549 cells expressing GFP-labeled PKC-θ after treatment with vehicle or C-232A.
- B. Confocal microscopy images of immunostained endogenous PKC-θ in Jurkat cells after treatment with vehicle or C-232A.
- C. Quantification of endogenous PKC-θ relative fluorescence in Jurkat cellular membrane over cytoplasm.


Figure 3. Prostratin and C-232A induce HIV transcription and CD69 activation in HIV-infected donor T cells ex vivo.

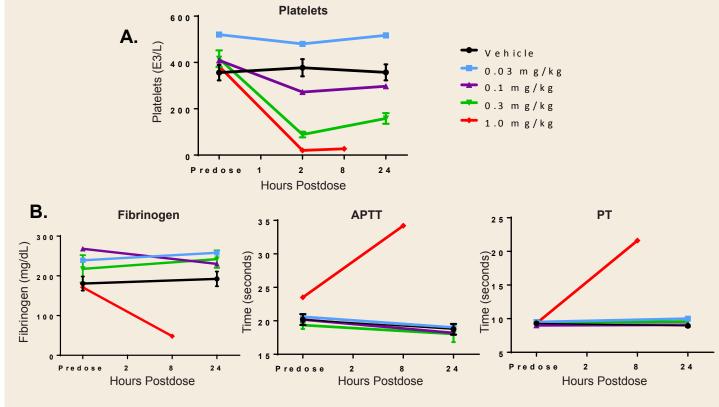


- A. Ex vivo assay workflow for donor T cells treated with PKC agonists.
- B. Dose-dependent C-232A induced HIV transcription and CD69 activation.
- C. Dose-dependent Prostratin induced HIV transcription and CD69 activation.


CA Snyder, A Irrinki, R McFadden, J Kaur, B Randhawa, H Truong, D Soohoo, C Greco, D Kornyeyev, E Hu, H Yu, B Murray, LA Burns-Naas, T Cihlar, JP Murry

Gilead Sciences, Inc., Foster City, CA, USA

in rhesus macaques results in both T cell activation and


- A. C-232A plasma level versus time curves and corresponding pharmacokinetic parameters
- B. C-232A induced CD69 expression on T-cells over time postdose.
- C. Clinical signs observed in animal administered a dose level of 1 mg/kg C-232A.

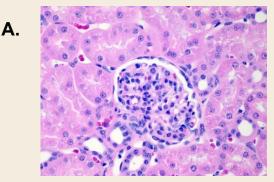
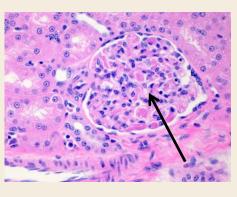

Similar PK and clinical signs were observed in PK/PD studies of C-232A in rats (data not presented).

Table 1. C-232A induces selected cytokine and chemokines in rhesus after IV administration.

Cytokine (pg/mL)	Cytokine levels in plasma at 4 hr post dose				
	Vehicle	0.03 mg/kg	0.1 mg/kg	0.3 mg/kg	1 mg/kg
IL-6	87	43	126	76	3872
IL-8	216	275	2531	375	6153
IL-1β	43	45	70	59	343
IL-1RA	117	169	775	2265	4471
MIP-1α	228	208	160	187	1111
MIP-1β	183	131	428	707	3913
I-TAC	112	88	427	365	5602
MIG	89	55	64	55	658
MCP-1	756	1900	3250	6117	13620
VEGF-A	160	107	161	81	330
IL-18	165	114	193	145	351
IFN-γ	54	43	75	53	200
IFN-α	166	90	143	112	187
TNF-α	48	56	39	19	28
IL-10	88	42	80	54	82

 Table 1. Multiplex immunoassays were performed to analyze cytokine and chemokine levels in plasma samples
collected from plasma of both vehicle control and C-232A groups 4 h after IV administration. IL-2, IL-4, IL-5, IL-7, IL-13, IL-15, IL-17A, and IL-23 were measured but not induced by C-232A.

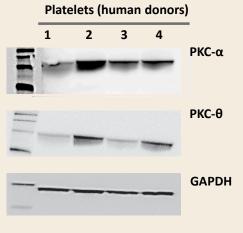
Figure 7. Certain PKC isoforms are expressed in platelets.

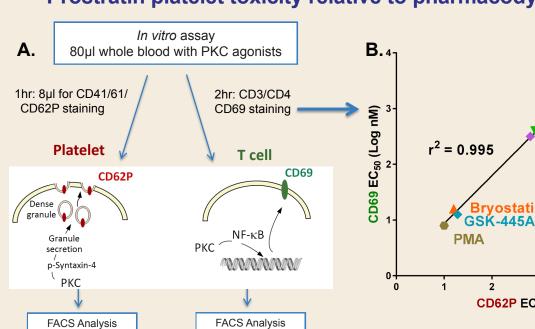

Figure 5. Abnormal hematology and coagulation parameters in rhesus macaques administered C-232A indicate platelet activation, aggregation and excessive clotting.

A. C-232A administration causes rapid dose-dependent decreases in circulating platelet levels.

B. Administration of 1 mg/kg C-232A by IV infusion causes an abnormal coagulation panel, with decreased circulating clotting factors (fibrinogen) and increased clotting times (activated partial thromboplastin time [APTT] and prothrombin time [PT]).

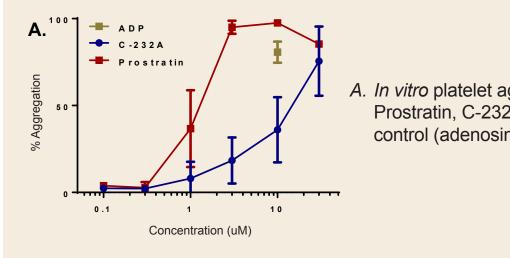
Similar hematology and coagulation findings were observed in PK/PD studies of C-232A in rats (data not presented).


Figure 6. IV infusion of C-232A at 1 mg/kg manifests in hemorrhage and thrombi across multiple organs in the rhesus macaque, a hallmark of disseminated intravascular coagulation (DIC).


A. Representative image of a normal glomerulus from an H&E stained kidney section of the monkey administered 1 mg/kg C-232A.

B. Representative image of multiple glomerular thrombi from an H&E stained kidney section of the monkey administered 1 mg/kg C-232A.

Histopathology analysis in the rhesus macaque did not reveal characteristics of cytokine release syndrome, such as immune cell infiltration or edema Similar histopathology findings were observed in PK/PD studies of C-232A in rats (data not presented)

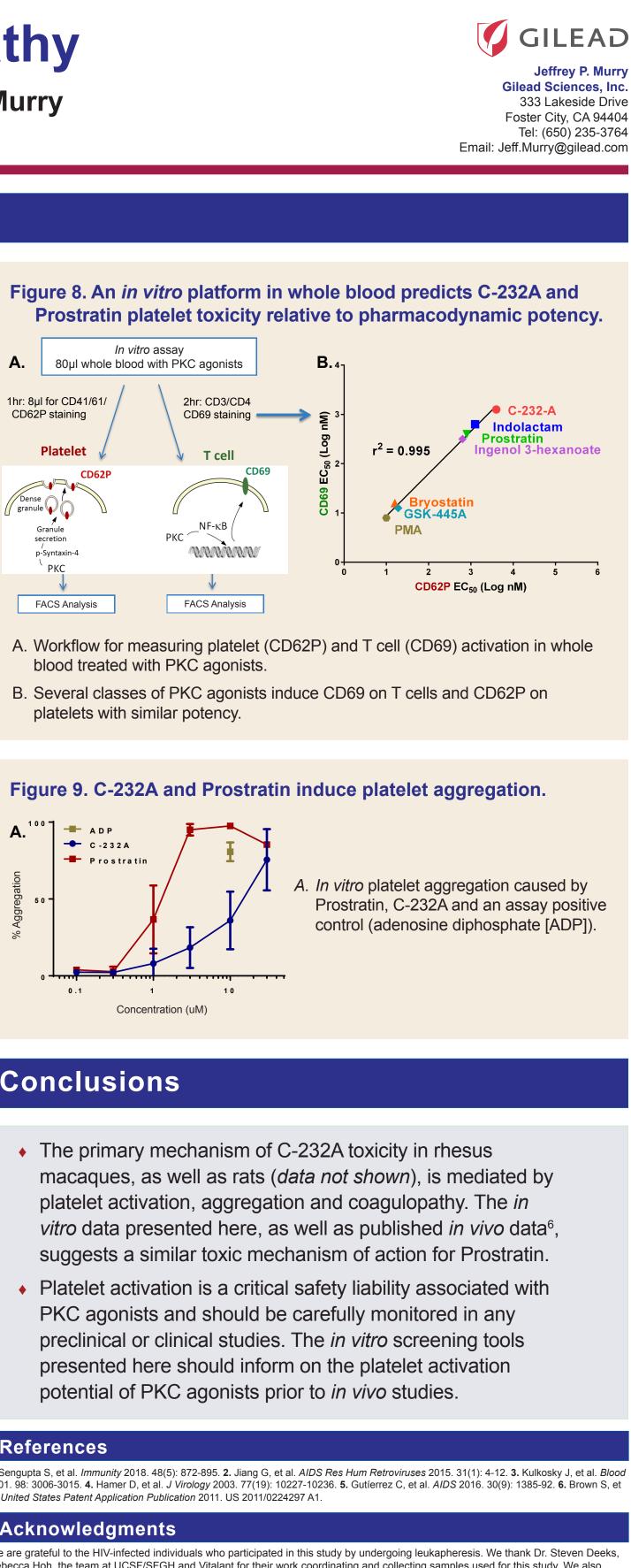


A. Western blot analysis for PKC- α , PKC-θ and GAPDH expression in platelets isolated from four healthy human donors.

- A. Workflow for measuring platelet (CD62P) and T cell (CD69) activation in whole blood treated with PKC agonists.
- B. Several classes of PKC agonists induce CD69 on T cells and CD62P on platelets with similar potency.

Figure 9. C-232A and Prostratin induce platelet aggregation.

Conclusions


- The primary mechanism of C-232A toxicity in rhesus macaques, as well as rats (*data not shown*), is mediated by platelet activation, aggregation and coagulopathy. The in vitro data presented here, as well as published in vivo data⁶, suggests a similar toxic mechanism of action for Prostratin.
- Platelet activation is a critical safety liability associated with PKC agonists and should be carefully monitored in any preclinical or clinical studies. The in vitro screening tools presented here should inform on the platelet activation potential of PKC agonists prior to in vivo studies.

References

1. Sengupta S, et al. Immunity 2018. 48(5): 872-895. 2. Jiang G, et al. AIDS Res Hum Retroviruses 2015. 31(1): 4-12. 3. Kulkosky J, et al. Blood 2001. 98: 3006-3015. 4. Hamer D, et al. J Virology 2003. 77(19): 10227-10236. 5. Gutíerrez C, et al. AIDS 2016. 30(9): 1385-92. 6. Brown S, et al. United States Patent Application Publication 2011. US 2011/0224297 A1

Acknowledgments

We are grateful to the HIV-infected individuals who participated in this study by undergoing leukapheresis. We thank Dr. Steven Deeks, Rebecca Hoh, the team at UCSF/SFGH and Vitalant for their work coordinating and collecting samples used for this study. We also thank Dr. Jay Lalezari, Cooper Lambandrake and the team at Quest Clinical Research and the Apheresis Care Group for their work coordinating and collecting samples used for this study. We thank the team at Covance for running the rat and rhesus macaque studies.

© 2019 Gilead Sciences, Inc. All rights reserved