

International Cohort Consortium

L. Greenberg<sup>1</sup>, L. Ryom<sup>2</sup>, B. Neesgaard<sup>2</sup>, G. Wandeler<sup>3</sup>, T. Staub<sup>3</sup>, M. Gisinger<sup>4</sup>, M. Skoll<sup>5</sup>, H. Günthard<sup>6</sup>, A. Scherrer<sup>6</sup>, C. Mussini<sup>7</sup>, C. Smith<sup>8</sup>, M. Johnson<sup>8</sup>, S. De Wit<sup>9</sup>, C. Necsoi<sup>9</sup>, C. Pradier<sup>10</sup>, F. Wit<sup>11</sup>, C. Lehmann<sup>12</sup>, A. d'Arminio Monforte<sup>13</sup>, J.M. Miró<sup>14</sup>, A. Castagna<sup>15</sup>, V. Spagnuolo<sup>15</sup>, A. Sönnerborg<sup>16</sup>, M. Law<sup>17</sup>, J. Hutchinson<sup>17</sup>, N. Chkhartishvili<sup>18</sup>, N. Bolokadze<sup>18</sup>, J-C. Wasmuth<sup>19</sup>, C. Stephan<sup>20</sup>, V. Vannappagari<sup>21</sup>, F. Rogatto<sup>22</sup>, J. Llibre<sup>23</sup>, C. Duvivier<sup>24</sup>, J. Hoy<sup>17</sup>, M. Bloch<sup>17</sup>, H.C. Bucher<sup>6</sup>, A. Calmy<sup>25</sup>, A. Volny Anne<sup>26</sup> A. Pelchen-Matthews<sup>1</sup>, J.D. Lundgren<sup>2</sup>, L. Peters<sup>2</sup>, L. Bansi-Matharu<sup>1</sup>, A. Mocroft<sup>1</sup> on behalf of the RESPOND study group

<sup>1</sup>Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, Universität Innsbruck, Austria; <sup>5</sup>Wiener Medizinische Universität, Austria; <sup>6</sup>Swiss HIV Cohort Study (SHCS), and Evaluation (CREME), Institute for Global Health, Universität Innsbruck, Austria; <sup>5</sup>Wiener Medizinische Universität, Austria; <sup>6</sup>Swiss HIV Cohort Study (SHCS), and Evaluation (CREME), Institute for Global Health, Universität Innsbruck, Austria; <sup>5</sup>Wiener Medizinische Universität, Austria; <sup>6</sup>Swiss HIV Cohort Study (SHCS), and Evaluation (CREME), Institute for Global Health, Universität Innsbruck, Austria; <sup>6</sup>Swiss HIV Cohort Study (SHCS), and Evaluation (CREME), and Evalua University of Zurich & University Hospital Basel, Switzerland; <sup>1</sup> Modena HIV Cohort, Université Libre de Bruxelles, Belgium; <sup>10</sup> Nice HIV Cohort, Université Côte d'Azur et Centre Hospital, University Hospital, Université Libre de Bruxelles, Belgium; <sup>10</sup> Nice HIV Cohort, Université Côte d'Azur et Centre Hospitalier Universite, Nice, France; <sup>11</sup> AIDS Therapy Evaluation in the Netherlands Cohort (ATHENA), Stichting HIV Monitoring (SHM), Netherlands; <sup>12</sup>University Hospital Cologne, Co Karolinska Institutet and Department of Infectious Diseases, Karolinska University Hospital; <sup>19</sup>University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Infectious Diseases, AIDS and Clinical Immunology Research Center, Georgia; <sup>19</sup>University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Infectious Diseases, AIDS and Clinical Immunology Research Center, Georgia; <sup>19</sup>University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Infectious Diseases, AIDS and Clinical Immunology Research Center, Georgia; <sup>19</sup>University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Germany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Bernany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University Hospital, Bonn, Bernany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University, Bernany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University, Bernany; <sup>20</sup>Frankfurt HIV Cohort Study, Johann Wolfgang Goethe-University, Bernany; <sup>20</sup>Frankfurt HIV Cohort Study, Bernany; <sup>20</sup> Germany; <sup>21</sup>ViiV Healthcare, RTP, USA; <sup>22</sup>Gilead science, Foster City, USA; <sup>23</sup>Hospital Universitari Germans Trias i Pujol · Department of Internal Medicine, HIV Unit; <sup>24</sup>APHP-Hôpital Necker-Enfants Malades, Service de Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker-Pasteur, IHU Imagine, Paris, France ; <sup>25</sup>HIV/AIDS Unit in Geneva University Hospital; <sup>26</sup> European AIDS Treatment Group

# BACKGROUND

- Several clinical trials and small observational studies have shown good short term virological efficacy and tolerability of 2DRs (1-6)
- Reasons for switching to 2DRs are multifactorial and include concerns about long-term toxicities and drug-drug interactions (7-8)
- Little is known from large studies regarding clinical outcomes of 2DRs

## METHODS

- Antiretroviral treatment experienced participants in the RESPOND consortium starting an eligible regimen during follow-up (FU) were included (Table 1)
- Baseline was defined as date of starting the first regimen of interest after cohort enrolment or 1/1/2012, whichever occurred the latest
- If a participant started a 2DR and 3DR of interest, they were included in the 2DR group
- Reasons for discontinuing the previous regimen were compared. Reasons were only counted if the previous regimen was discontinued ≤7 days before starting an eligible regimen
- This analysis focused on severe clinical events including: AIDS (cancer and non-cancer), non-AIDS defining cancer (NADC), cardiovascular disease (CVD; invasive cardiovascular procedures, myocardial infarction, or stroke), end stage liver disease (ESLD), end stage renal disease (ESRD), and death
- Individuals were followed until the first severe event of any type or until last clinical visit or 1/10/2018, whichever occurred first
- Incidence rates (IR) of clinical events between those starting a 2DR vs. 3DR were compared using Poisson regression with adjustment for baseline characteristics
- Sensitivity analyses were performed including centrally validated events only and only including approved 2DRs

| 31                     | DR   |        | 2DR         |      |        |  |
|------------------------|------|--------|-------------|------|--------|--|
| Regimen                | n    | (%)    | Regimen     | n    | (%)    |  |
| Total                  | 8703 | (88.9) | Total       | 1088 | (11.1) |  |
| 2 NRTIs + DTG          | 4081 | (46.9) | DTG + 3TC*  | 248  | (22.8) |  |
| 2 NRTIs + RPV          | 1726 | (19.8) | RAL + DRV/b | 215  | (19.8) |  |
| 2 NRTIs + RAL          | 1228 | (14.1) | DTG + DRV/b | 200  | (18.4) |  |
| 2 NRTIs + DRV/b        | 923  | (10.6) | DTG + RPV*  | 146  | (13.4) |  |
| 2 NRTIs + NVP          | 388  | (4.5)  | 3TC + DRV/b | 107  | (9.8)  |  |
| 2 NRTIs + ATV or ATV/b | 277  | (3.2)  | RAL + ETV   | 79   | (7.3)  |  |
| 2 NRTIs + ETV          | 80   | (0.9)  | RAL + NVP   | 36   | (3.3)  |  |
|                        | · ·  |        | RPV + DRV/b | 31   | (2.9)  |  |
|                        |      |        | 3TC + ATV/b | 26   | (2.4)  |  |

iolutegravir; ETV – etravirine; RAL – raitegravir; RPV – riipivirine; NVP – nevirapine; 7D – boosted with codicistat or ritonavi Eligible 3DRs were chosen so that the 3<sup>rd</sup> antiretrovirals were the same antiretrovirals as used in the 2DRs; \*approved 2DRs

### Download poster at: www.chip.dk

# **CROI 2020** CLINICAL OUTCOMES OF TWO DRUG REGIMENS (2DRs) VS. THREE DRUG REGIMENS (3DRs) IN HIV

# RESULTS

- Overall, 9791 individuals were included; 1088 (11.1%) on 2DRs and 8703 (88.9%) on 3DRs
- Individuals on 2DRs were older and a higher proportion had a prior AIDS defining event or prevalent comorbidity (Table 2)
- The most common 2DRs were DTG plus 3TC (22.8%) and RAL plus DRV/b (19.8%) (Table 1)
- The most common 3DR was 2 NRTIs plus DTG (46.9%). The most common NRTI backbones were TDF plus FTC (45.0%) and ABC plus 3TC (40.5%)
- The main reason for discontinuing the previous regimen before starting a 2DR or 3DR was toxicity (30.9% 2DRs vs 31.1% 3DRs; p=0.87); renal toxicity was most common for switches to 2DRs (37.9%) and toxicity from the nervous system was most common for switches to 3DRs (28.3%)

| Table 2: Baseline clinical characteristics                                                                                          |            | All    |                | 3DR    |                | 2DR    |                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------------|--------|----------------|--------|----------------|--------|----------------|--|--|
|                                                                                                                                     |            | n      | (%)            | n      | (%)            | n      | (%)            |  |  |
|                                                                                                                                     |            | 9791   | (100)          | 8703   | (88.9)         | 1088   | (11.1)         |  |  |
| Gender                                                                                                                              | Male       | 7048   | (72.0)         | 6253   | (71.9)         | 795    | (73.1)         |  |  |
| Ethnicity                                                                                                                           | White      | 6976   | (71.2)         | 6147   | (70.6)         | 829    | (76.2)         |  |  |
| BMI (kg/m²)                                                                                                                         | <18.5      | 363    | (3.7)          | 310    | (3.6)          | 53     | (4.9)          |  |  |
|                                                                                                                                     | ≥25        | 2923   | (29.9)         | 2666   | (30.6)         | 257    | (23.6)         |  |  |
| Current smoking                                                                                                                     |            | 2836   | (29.0)         | 2599   | (29.9)         | 237    | (21.8)         |  |  |
| <b>Risk of acquisition</b>                                                                                                          | MSM        | 4037   | (41.2)         | 3631   | (41.7)         | 406    | (37.3)         |  |  |
| HIV VL                                                                                                                              | <200 Cp/mL | 8588   | (87.7)         | 7648   | (87.9)         | 940    | (86.4)         |  |  |
| Viral hepatitis B                                                                                                                   | Positive   | 488    | (5.0)          | 445    | (5.1)          | 43     | (4.0)          |  |  |
| Viral hepatitis C                                                                                                                   | Positive   | 2568   | (26.2)         | 2268   | (26.1)         | 300    | (27.6)         |  |  |
| AIDS defining event                                                                                                                 | Yes        | 2021   | (20.6)         | 1731   | (19.9)         | 290    | (26.7)         |  |  |
| Comorbidity                                                                                                                         | Yes        | 7321   | (74.8)         | 6433   | (73.9)         | 888    | (81.6)         |  |  |
|                                                                                                                                     |            | Median | (IQR)          | Median | (IQR)          | Median | (IQR)          |  |  |
| Regimen start date (                                                                                                                | (mm/yy)    | 08/15  | (05/14, 09/16) | 07/15  | (04/14, 08/16) | 12/15  | (12/14, 01/17) |  |  |
| Age (years)                                                                                                                         |            | 48     | (40, 55)       | 48     | (40, 54)       | 53     | (47, 59)       |  |  |
| CD4 count (cells/µL)                                                                                                                |            | 608    | (423, 810)     | 605    | (424, 809)     | 622    | (409, 814)     |  |  |
| Number of previous<br>antiretrovirals exposed to                                                                                    |            | 6      | (4-9)          | 6      | (4-8)          | 8      | (5-11)         |  |  |
| Percentage of unknown variable (all): Ethnicity 13.0; BMI 23.7; Smoking 30.9; Risk of acquisition 4.2; Hepatitis B 9.2; Hepatitis C |            |        |                |        |                |        |                |  |  |

6.4; AIDS defining event 5.8; Comorbidity 16.3. Comorbidities included: diabetes, hypertension, non AIDS defining cancer, cardiovascular disease, chronic kidney disease, end stage liver disease, end stage renal disease, fracture, dyslipidaemia. Differences between 3DRs and 2DRs are significant (p≤0.05), except for gender, hepatitis C, and CD4 count

- Median FU was 2.6 (IQR 1.4-3.8) years and was similar on 2DRs and 3DRs (2.2 (1.2-3.2) on 2DRs and 2.7 (1.4-3.8) on 3DRs)
- Overall, there were 619 clinical events during 27159 person years of FU [PYFU] (IR/1000 PYFU [95% CI] 23.3 [21.6-25.2])
- The most common events were death (IR 7.5/1000 PYFU [6.5-8.6]), and NADC (IR 5.8/1000 PYFU [4.9-6.8]) (Figure 1)
- There were 79 events on 2DRs during 2642 PYFU (IR 30.9 [24.8-38.5]) and 540 events on 3DRs during 24516 PYFU (IR 22.5/1000 PYFU [20.7-24.5])
- In unadjusted analyses, there was a higher IR of events on 2DRs (IR ratio 1.37 [1.08-1.73], p=0.009). However, after adjustment for potential confounders (age and number of drugs previously exposed to in particular) there was no significant difference between 2DRs and 3DRs (IR ratio 0.92 [0.72-1.19], p=0.53) (Figure 2)
- approved 2DRs showed similar results

Sensitivity analyses including only centrally validated events and only including

### Figure 1: Crude IR/1000 PYFU and 95% CI for 2DR vs 3DR

AIDS (non cancer)

AIDS cancer

### Figure 2: Incidence rate ratio comparing events on 2DR vs 3DR

# All events Unadjusted

Adjusted

Unadjusted Adjusted

prior chronic kidney disease, prior dyslipidaemia, number of drugs previously exposed to, prior treatment duration

# LIMITATIONS

- Residual confounding cannot be ruled out
- This analysis focuses on a composite endpoint, rather than individual events
- Due to limited numbers, we were unable to include treatment naïve individuals in the analysis

# CONCLUSIONS

- This is the first large, international cohort to assess rigorously defined severe clinical outcomes on 2DRs
- After accounting for demographic and clinical characteristics, there was a similar incidence of events on 2DRs and 3DRs
- 2DRs appear to be a viable treatment option with regards to clinical outcomes. Further research on long-term durability of 2DRs is needed



### Poster No. 0487

Lauren Greenberg Institute for Global Health, Rowland Hill St, London, UK, NW3 2PF Tel: 0208 016 8051 Email: l.greenberg@ucl.ac.uk





The RESPOND Study Group: https://www.chip.dk/Studies/RESPOND/Study-Group

U C

**REFERENCES:** [1] Capetti AF, et al. PLoS ONE 2016 [2] Baril J-G, at al. PLoS ONE 2016 [3] Llibre JM, et al. The Lancet 2018 [4] Revuelta-Herrero JL, et al. Annals of Pharmacotherapy 2018 [5] Cahn P, et al. The Lancet 2018 [6] Neesgaard B, et al. AIDS 2019 [7] Back D, Germs 2017 [8] EACS Treatment Guidelines v10.0 2019