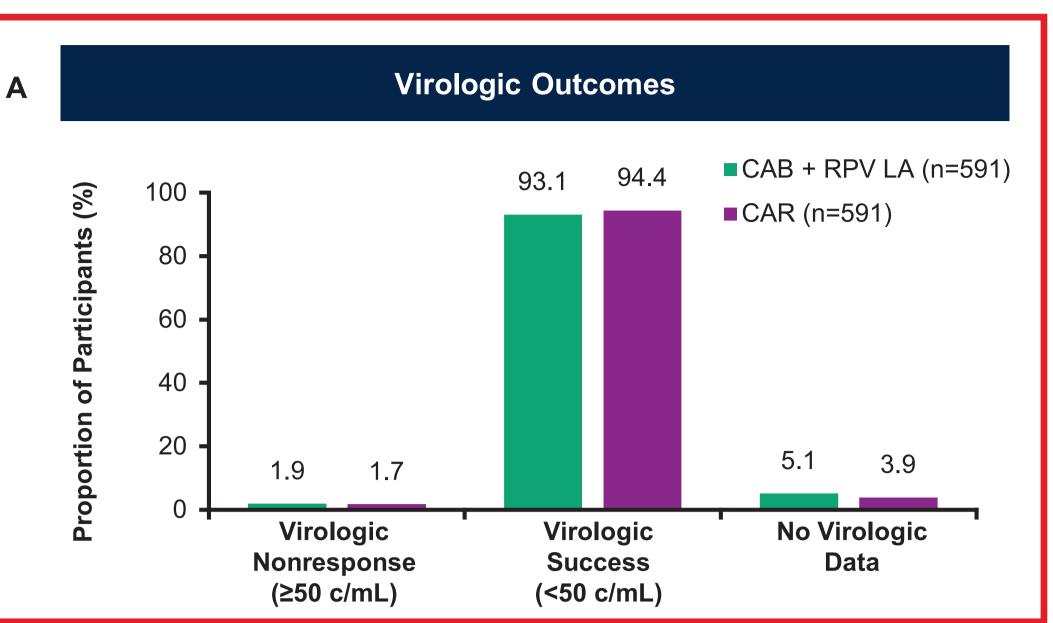
Monthly Long-Acting Cabotegravir and Rilpivirine is Noninferior to Oral **ART as Maintenance Therapy for HIV-1 Infection: Week 48 Pooled Analysis From the Phase 3 ATLAS and FLAIR Studies**

Edgar T. Overton,¹ Chloe Orkin,² Susan Swindells,³ Keikawus Arasteh,⁴ Miguel Górgolas Hernández-Mora,⁵ Vadim Pokrovsky,⁶ Pierre-Marie Girard,⁷ Shinichi Oka,⁸ Jaime-Federico Andrade-Villanueva,⁹ Gary J. Richmond,¹⁰ Giuliano Rizzardini,¹¹ Axel Baumgarten,¹² Maria Del Mar Masiá,¹³ Gulam Latiff,¹⁴ Sandy Griffith,¹⁵ Conn M. Harrington,¹⁵ Krischan J. Hudson,¹⁵ Marty St. Clair,¹⁵ Christine Talarico,¹⁵ Veerle Van Eygen,¹⁶ Ronald D'Amico,¹⁵ Joseph M. Mrus,¹⁵ Sterling Wu,¹⁷ Ken Chow,¹⁸ Jeremy Roberts,¹⁸ Simon Vanveggel,¹⁶ David A. Margolis,¹⁵ Peter Williams,¹⁶ Wim Parys,¹⁶ Kimberly Smith,¹⁵ William R. Spreen¹⁵ ¹University of Alabama at Birmingham, Birmingham, AL, USA; ²Queen Mary University, London, UK; ³University of Nebraska Medical Center, Omaha, NE, USA; ⁴EPIMED GmbH, Berlin, Germany; ⁵Fundación Jiménez Díaz, Madrid, Spain;

⁶Central Research Institute of Epidemiology, Moscow, Russia; ⁷Hôpital Saint Antoine, Paris, France; ⁸National Center for Global Health and Medicine, Tokyo, Japan; ⁹University of Guadalajara, Guadalajara, Mexico; ¹⁰Broward Health Medical Center, Fort Lauderdale, FL, USA; ¹¹Fatebenefratelli Sacco Hospital, Milan, Italy; ¹²MIB Infectious Disease Medical Center, Berlin, Germany; ¹³Hospital General de Elche, Alicante, Spain; ¹⁴Maxwell Centre, Durban, South Africa; ¹⁵ViiV Healthcare, Research Triangle Park, NC, USA; ¹⁶Janssen Research & Development, Beerse, Belgium; ¹⁷GlaxoSmithKline, Collegeville, PA, USA; ¹⁸GlaxoSmithKline, Mississauga, Ontario, Canada


- Despite the success of daily oral therapy, considerable interest exists in long-acting (LA) treatment options for HIV-1 infection.
- Cabotegravir (CAB) is an HIV-1 integrase strand transfer inhibitor.^{1,2} • Oral 30 mg tablet: half-life $(t_{\frac{1}{2}}) \approx 40$ hours.
 - LA intramuscular (IM) injection, 200 mg/mL: $t_{1/2} \approx 40$ days.
- Rilpivirine (RPV) is an HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI).^{1,2}
 - Oral 25 mg tablet: $t_{1/2} \approx 50$ hours.
 - LA IM injection, 300 mg/mL: $t_{\frac{1}{2}} \approx 90$ days.
- ATLAS¹ (NCT02951052) and FLAIR² (NCT02938520) are two randomized, open-label, international Phase 3 studies which evaluate switching to monthly IM injections.

Objective and Endpoints

Objective

Establish noninferior antiviral activity of monthly IM CAB + RPV

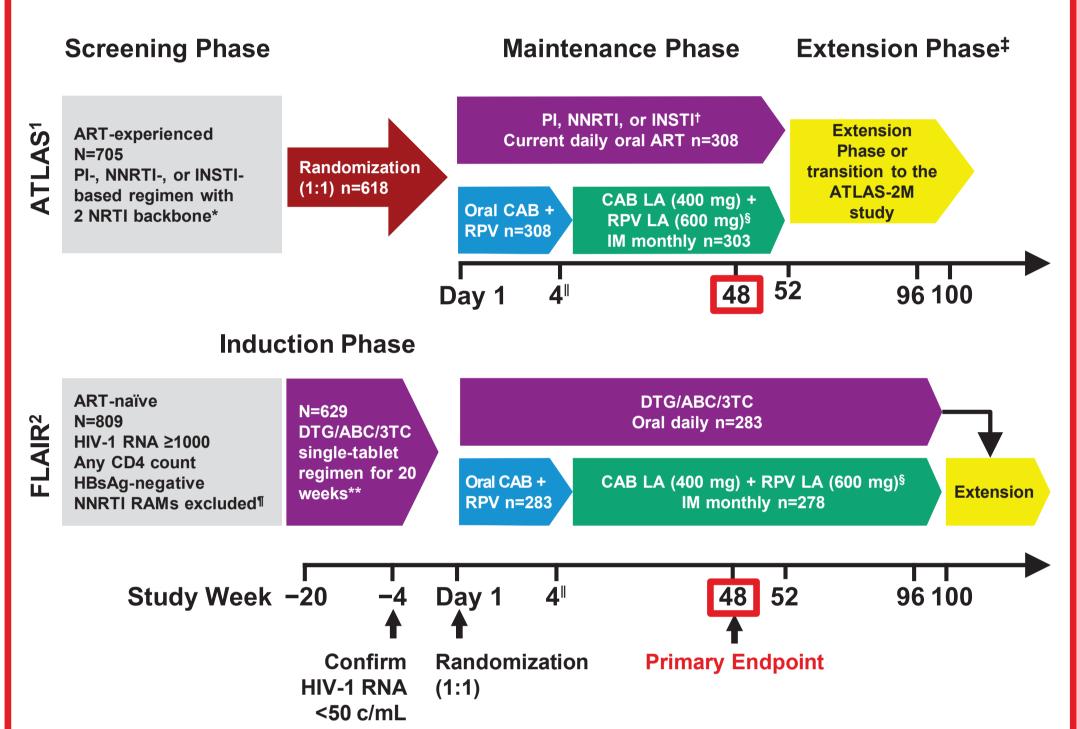
Figure 3. Virologic Snapshot Outcomes at Week 48 for ITT-E Noninferiority Achieved for Primary and Secondary Endpoints

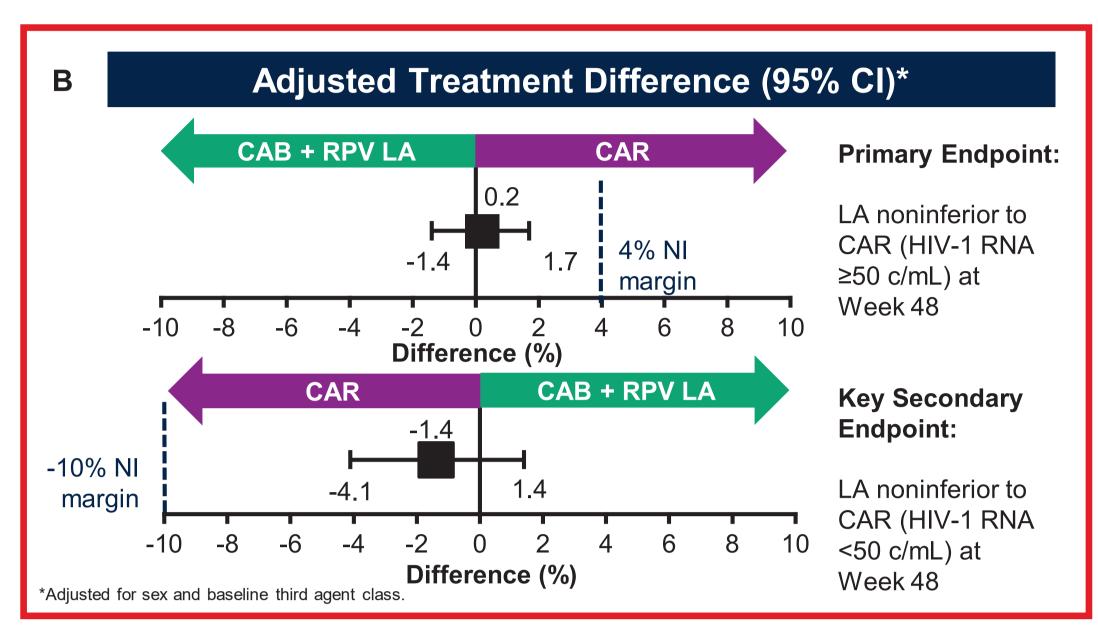
Table 4. ATLAS and FLAIR Confirmed Virologic Failures*: CAB + RPV LA Arm

	Sex, Country,			eline Ms†	Viral Load at SVF /	Time	/F point Ms	Drug Sensitivity
Study	HIV-1 Subtype	Previous CAR	RT	INSTI	CVF (c/mL)	RT	INSTI‡	at SVF (Fold Change) [§]
	F, Russia, A/A1	3TC, AZT, LPV/r	E138E/ A	None	79,166 / 25,745	E138A	None	RPV (2.4) CAB (0.8) DTG (0.9)
ATLAS	F, France, AG	3TC, AZT, NVP to 3TC, ABC, NVP	V108V/I E138K	None	695 / 258	V108I E138K	None	RPV (3.7) CAB (1.2) DTG (1.0)
	M, Russia, A/A1	FTC, RAL, TDF to ABC, EFV, 3TC	None	None	544 / 1841	E138E/ K	N155H	RPV (6.5) CAB (2.7) DTG (1.2)
	F, Russia, A1	_	None	None	373 / 456	E138E/ A/K/T	Q148R	RPV (7.1) CAB (5.2) DTG (1.0)
FLAIR	M, Russia, A1	_	None	None	287 / 299	K101E	G140R	RPV (2.6) CAB (6.7) DTG (2.2)
	F, Russia, A1	_	None	None	488 / 440	E138K	Q148R	RPV (1.0) CAB (9.4) DTG (1.1)

MOPEB257

LA vs continuing current antiretroviral regimen (CAR) in treatment-experienced (ATLAS) and previously treatment-naïve (FLAIR) participants.


Primary Endpoint


Proportion of participants with HIV-1 RNA ≥50 c/mL at Week 48 using the U.S. Food and Drug Administration (FDA) Snapshot algorithm (4% noninferiority margin on difference between groups).

Selected Secondary and Exploratory Endpoints

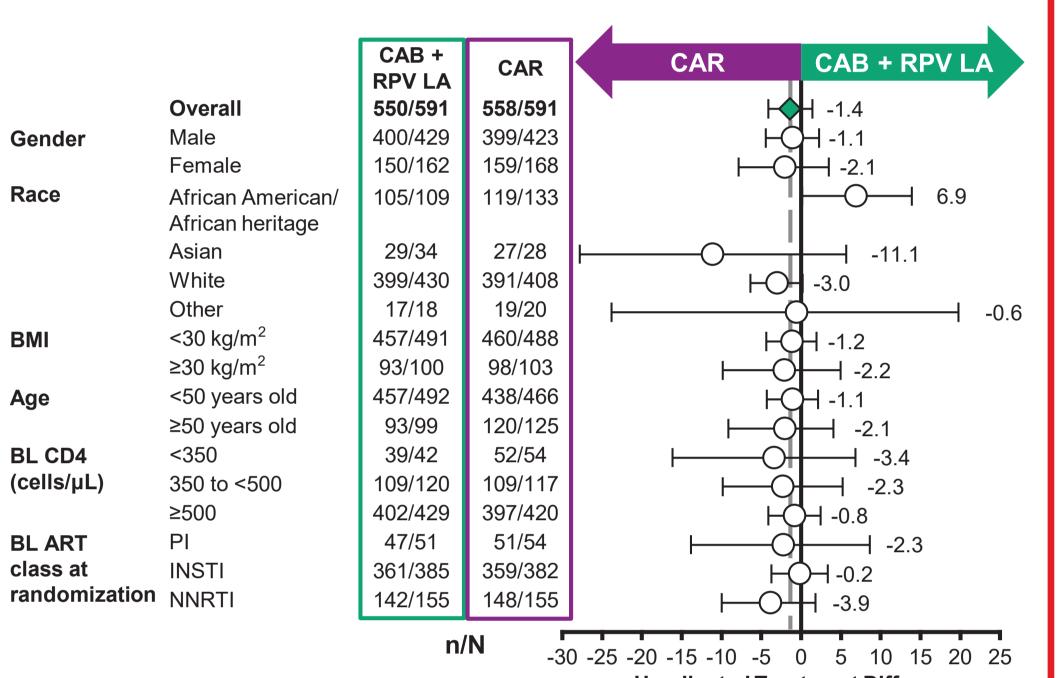

- HIV-1 RNA <50 c/mL at Week 48 (Snapshot).
- Safety and tolerability.
- Treatment satisfaction and preference.
- Resistance analysis of confirmed virologic failure (CVF).

Figure 1. ATLAS and FLAIR Study Design

Figure 4. Treatment Difference in Proportion (95% CI) Snapshot HIV-1 RNA <50 c/mL at Week 48 by Subgroup

*In the CAR arm, there were seven CVFs. In ATLAS, there were 4 CVFs in the CAR arm, where RT mutations M184I, M184V+G190S, and M230M/I were detected in HIV-1 RNA samples from one participant each, and one had no mutations. In FLAIR, there were 3/4 CVFs in the CAR arm without treatment-emergent resistance mutations or phenotypic changes.

[†]Baseline RAMs were determined using DNA for ATLAS and RNA for FLAIR; [‡]L74I was present at baseline in 5/6 subjects and is not considered an INSTI RAM by IAS-US guidelines and has no impact on CAB activity; §Monogram biological cutoffs are: RPV=2.0, CAB=2.5, and the Monogram clinical cutoff for DTG=4.0; "FLAIR had oral CAB/RPV dosing interrupted due to a false-positive pregnancy test and upon re-initiation of oral therapy, had suspected VF that was confirmed

Table 5. Summary of the Prevalence of L74I at Baseline* by Subtype in FLAIR Participants

Subtype	CAB + RPV LA L74I [†] Within Subtype, n/N (%) [‡]	CAR L74I [†] Within Subtype, n/N (%) [:]
Total L74I Present / Total tested	54/243 (22)	47/240 (20)
A	32/38 (84)	28/32 (88)
A1	5/8 (63)	3/4 (75)
AE	0/0	0/3
AG	3/10 (30)	3/13 (23)
В	12/165 (7)	11/161 (7)
С	0/2	0/4
Undetermined	0/5	0/5
Other	2/15 (13)	2/18 (11)

*Baseline values taken at Week –20 in participants that were randomized; †L74I is not considered an INSTI RAM by IAS-US guidelines and has no impact on CAB activity; ‡Results pending for 40 and 43 samples, respectively

101/483 subjects tested had the L74I substitution, with the majority of subjects with L74I (64/101, 63.4%) coming from the Russian Federation. In contrast, 5/84 (6.0%) subjects from the United States had the L74I substitution.

*Uninterrupted ART ≥ 6 months and VL <50 c/mL at Screening, 2× VL <50 c/mL ≤12 months; †INSTI-based regimen capped at 40% of enrollment; Triumeq excluded from study; [‡]Optional switch to CAB + RPV LA at Week 52 for those on CAR; [§]Participants who withdraw/complete IM CAB + RPV LA must complete 52 weeks of follow-up; "Participants received initial loading dose of CAB LA (600 mg) and RPV LA (900 mg) at Week 4. From Week 8 onwards, participants received CAB LA (400 mg) + RPV LA (600 mg) injections every 4 weeks; INNRTI RAMs, but not K103N, were exclusionary; **DTG plus two alternative non-ABC NRTIs was permitted if participant was intolerant or HLA-B*5701-positive

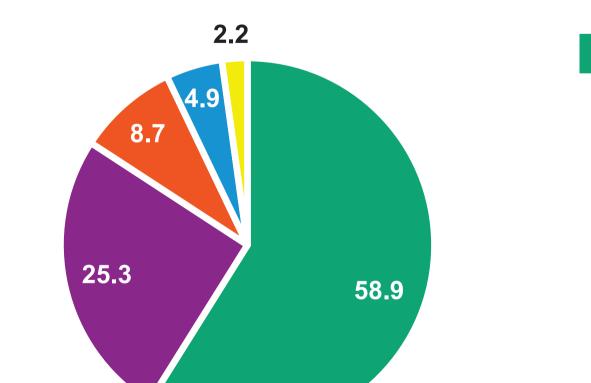

Results

Table 1. Baseline Characteristics: ITT-E Population

	CAB + RPV LA N=591	CAR N=591
Median age, years (range)	38 (19–74)	38 (18–82)
Age ≥50 years, n (%)	99 (17)	125 (21)
Female, n (%)	162 (27)	168 (28)
Race, n (%)		
White	430 (73)	408 (69)
Black or African American	109 (18)	133 (23)
Other	52 (9)	50 (8)
Median BMI (range), kg/m²	24.9 (15.3–50.9)	24.8 (12.6–57.7)
Median CD4+ cell count (IQR), cells/mm ³	645 (487–824)	641 (480–821)
HIV-1–HCV co-infection, n (%)	42 (7)	40 (7)

*Baseline for FLAIR was Day 1 (Maintenance Phase).

Figure 2. Summary of ITT-E Participants by Region and Country

Europe	n=696
Spain	n=219
Russian Federation	n=199
Germany	n=92
France	n=75
Italy	n=66
UK	n=25
Sweden	n=15
Netherlands	n=5

Unadjusted Treatment Difference in Proportion (95% CI)

Dashed line represents the overall difference in proportion.

 Table 3. Safety Overview, Excluding ISRs, Through Week 48
 in Maintenance Phase

	CAB + RPV LA N=591	CAR N=591
Any AE	506 (86%)	444 (75%)
Any Grade 3/4/5 AE*	44 (7%)	35 (6%)
Any drug-related AE	165 (28%)	35 (6%)
Any Grade 3/4/5 drug-related AE*	8 (1%)	1 (<1%)
Any AEs leading to withdrawal	17 (3%)	9 (2%)
Any serious AE	24 (4%)	25 (4%)
Serious AEs related to study treatment ⁺	1 (<1%)	1 (<1%)
Common AEs (≥5%)		
Nasopharyngitis	108 (18%)	90 (15%)
Headache	73 (12%)	38 (6%)
Upper respiratory tract infection	70 (12%)	53 (9%)
Diarrhea	54 (9%)	40 (7%)
Back pain	43 (7%)	23 (4%)
Influenza	42 (7%)	34 (6%)
Pyrexia	43 (7%)	13 (2%)
AEs of special interest		
Anxiety	27 (5%)	20 (3%)
Depression	16 (3%)	14 (2%)
Suicidal ideation/behavior	4 (<1%)	5 (<1%)

*There was only one (<1%) participant with Grade 5 AE in the CAR arm; †Serious AEs related to study treatment: LA arm – arthritis; CAR arm - suicidal ideation

Figure 5. Pooled Injection Site Reactions

ISR Incidence by Week ତି ¹⁰⁰]	Event	CAB + RPV LA N=591
°) 80 - 80 -	Participants receiving injections, n	581
	Injections given, n	14682
ki k - 00 -	ISR events, n (%)	3663 (24.9)
	Pain	3087 (21.0)
st 40 -	Nodule	140 (1.0)
	Induration	136 (0.9)
	Swelling	86 (0.6)
40 - 02 - 02 - 02 - 02 - 02 - 02 - 02 -	Grade 3 ISR pain	32 (0.2)
• 0 • • • • • • • • • • • • • • • • • •	48 Median duration of ISRs, days	3
Study Week	Participants with ISR leading to withdrawal, n (%)	6 (1)

- L74I was most commonly observed in Subtype A (60/70; 85.7%) (**Table 5**).
- Subtype B (326/483, 67.5%) was the most prevalent subtype observed in the FLAIR subjects.

Table 6. Effect of L74I on Virologic Suppression at Week 48 in **FLAIR** Participants

L74I Polymorphism at Induction BL	Treatment	Number of HIV-1 RNA <50 c/mL / Total Assessed (%)	Difference in Proportion* (95% CI)
Yes	CAB + RPV LA	50/54 (93)	–1.0 (–12.7, 11.0)
165	CAR	44/47 (94)	-1.0 (-12.7, 11.0)
Ne	CAB + RPV LA	177/189 (94)	0.4(10.56)
No	CAR	180/193 (93)	0.4 (-4.9, 5.6)

*Difference (unadjusted): Proportion on CAB + RPV LA - Proportion on CAR.

- The presence of L74I IN polymorphism had no impact on overall treatment outcomes:
 - HIV-1 RNA <50 by Snapshot (**Table 6**).
 - [2.1%], treatment difference of 3.4 [95% CI –6.8, 13.5]).

Figure 6. Participant Satisfaction (HIVTSQs) and Preference for **Injectable Therapy**

HIVTSQs Total Scor	'e*	Improvement
The pooled data reported a significant increase among study participants in treatment satisfaction of injectable therapy	Week 24*	Difference (95%Cl) + + 4.2 $3.9 (3.0-4.8), p<0.001+ + 0.3$
compared with participants receiving oral therapy at Weeks 24 and 44	Week 44*	$+3.9$ \rightarrow 3.4 (2.5-4.3), p<0.001 + +0.5

Patient Preference Survey (LA Arm)

ITT-E population: 88% (523/591) preferred LA; 2% (9/591) preferred

*Adjusted mean change from baseline; adjusted for baseline score, sex, age, and race. Error bars show 95% CI. n=557 for

Responding participants: 98% (523/532) preferred the LA regimen over

Single-item question on participants' preference at Week 48

CAB + RPV LA at Week 24 and Week 44: n=543 for CAR at Week 24 and n=552 at Week 44.

daily oral therapy

previous oral therapy

■CAB + RPV LA ■CAR

		North America	n=299
		USA	n=242
		Canada	n=57
sia/Australia Ipan	n=58 n=20	South Africa	n=103
alia	n=19	Latin America	n=26
lic of Korea	n=19	Argentina	n=16
		Mexico	n=10

 Table 2. Pooled Snapshot Outcomes at Week 48 (ITT-E)

	CAB + RPV LA N=591	CAR N=591
HIV-1 RNA <50 c/mL	550 (93.1%)	558 (94.4%)
HIV-1 RNA ≥50 c/mL	11 (1.9%)	10 (1.7%)
Data in window not below threshold	3 (0.5%)	3 (0.5%)
Discontinued for lack of efficacy	7 (1.2%)	5 (0.8%)
Discontinued for other reason while not below threshold	1 (0.2%)	2 (0.3%)
Change in background therapy	0	0
No virologic data	30 (5.1%)	23 (3.9%)
Discontinued study due to AE	19 (3.2%)	7 (1.2%)
Discontinued study due to death	0	1 (0.2%)
Discontinued study for other reasons	11 (1.9%)	16 (2.7%)
On study but missing data in window	0	0

Bars represent incidence of onset ISRs relative to the most recent IM injection visit.

The majority (99%, 3628/3663) of ISRs were Grade 1–2 and most (88%) resolved within ≤7 days

Conclusions

- Monthly injections of CAB + RPV LA were noninferior to daily oral CAR for key virologic endpoints at Week 48.
 - Primary and secondary outcomes in ATLAS¹ and FLAIR² analyzed separately were similar to the results in the pooled analysis.
- Low CVF (1.2%) was seen across both treatment arms.
- Injection site reactions in the LA arm were common but mainly Grade 1 or 2, with few associated discontinuations.
- L74I polymorphism alone had no impact on overall efficacy among FLAIR participants; further research on the interplay between L74I and HIV sub-type is ongoing.
- High treatment satisfaction reported among those receiving CAB + RPV LA.
- Overall, ATLAS and FLAIR show that CAB + RPV LA offers individuals with HIV-1 infection a well-tolerated, novel, long-acting two-drug regimen without an increased risk of virologic failure.

Abbreviations

3TC, lamivudine; ABC, abacavir; AE, adverse event; ART, antiretroviral therapy; AZT, azidothymidine; BL, baseline; BMI, body mass index; CAB, cabotegravir; CAR, current antiretroviral; CI, confidence interval; CVF, confirmed virologic failure; DTG, dolutegravir; EFV, efavirenz; FTC, emtricitabine; HBsAg, hepatitis B surface antigen; HCV, hepatitis C virus; HIVTSQs, HIV Treatment Satisfaction Questionnaire (Status); HLA, human leukocyte antigen; INSTI, integrase strand transfer inhibitor; IQR, interquartile range; ISR, injection site reaction; ITT-E, intention-to-treat exposed; LA, long-acting; LPV, lopinavir; NNRTI, non-nucleoside reverse transcriptase inhibitor; NVP, nevirapine; PI, protease inhibitor; r, ritonavir; RAL, raltegravir; RAM, resistance-associated mutation; RPV, rilpivirine; RT, reverse transcriptase; SVF, suspected virologic failure; TDF, tenofovir disoproxil fumarate; VL, viral load. References

Acknowledgments

We thank everyone who has contributed to the success of the study: All study participants and their families, the FLAIR and ATLAS clinical investigators and their staff. ATLAS and FLAIR are funded by ViiV Healthcare and Janssen R&D. Professional medical writing and editorial assistance was provided by Nicole Ogbonnaya at Articulate Science, funded by ViiV Healthcare.

- 1. Swindells S, et al. Abstract 1475. Presented at: Conference on Retroviruses and *Opportunistic Infections*; March 4-7, 2019; Seattle, WA;
- 2. Orkin C, et al. Abstract 3947. Presented at: Conference on Retroviruses and *Opportunistic Infections*; March 4-7, 2019; Seattle, WA.

10th IAS Conference on HIV Science; July 21–24, 2019; Mexico City, Mexico