

1. BACKGROUND

- Decompensated liver disease resulting from hepatitis C virus (HCV) infection is a leading indication for liver transplantation (LT)¹
- Following LT, life-long therapy with immunosuppressants such as the calcineurin inhibitors cyclosporine (CSP) and tacrolimus (TAC) is required
- CSP and TAC are substrates of both CYP3A4 and P-glycoprotein (P-gp)²
- CSP is an inhibitor of both CYP3A4 and P-gp³
- Both CSP and TAC have narrow therapeutic windows²
- HCV recurrence post-LT is common and characterized by:
- High levels of HCV replication, and accelerated necroinflammation and fibrosis^{4,5}
- Significantly lower survival rates relative to non-HCV-infected LT recipients^{4,5}
- Limited treatment options
- Initiation and maintenance of therapy with peginterferon/ribavirin in LT recipients with recurrent HCV is complicated by:
- Clinical characteristics that preclude full-dose therapy⁶
- Dose reductions (30–70% of patients) and premature discontinuations (20–40% of patients) due to adverse events (AEs)⁶
- Low rates of sustained viral response (SVR; $\approx 20\%)^7$
- Interferon-related immune-mediated allograft dysfunction⁸
- Direct-acting antivirals (DAAs) may provide new treatment options for patients infected with HCV, including LT recipients
- The use of currently available protease inhibitors (boceprevir and telaprevir) in LT recipients is complicated by potentially severe drug–drug interactions (DDIs) with calcineurin inhibitors^{9,10}
- Daclatasvir (DCV) is a HCV NS5A replication complex inhibitor
- Potent pan-genotypic (genotypes 1–6) antiviral activity *in vitro*¹¹
- Generally well tolerated with low potential for clinically significant DDIs^{12–14} - Pharmacokinetic (PK) profile suitable for once-daily (QD) dosing with no food restrictions¹⁵
- Studied in over 5500 patients in combinations with other DAAs, and peginterferon/ribavirin
- Substrate of CYP3A4 and P-gp
- Levels of unbound DCV are unaffected by moderate-to-severe hepatic impairment and dose adjustment is not required for this condition¹⁶
- DCV has been used successfully in combination with sofosbuvir as part of a DAA-only regimen without signs of a significant DDI with TAC in a LT recipient with severe recurrent cholestatic HCV¹⁷
- DCV has been used successfully in combination with peginterferon/ribavirin without signs of a significant DDI with CSP in a LT recipient¹⁸
- The aim of this study was to assess the effect of multiple doses of DCV on the single-dose pharmacokinetic (PK) profiles of CSP and TAC, and the effect of single doses of CSP and TAC on the PK profile of DCV

2. METHODS

This was an open-label, single-sequence study in healthy male and female subjects aged 18–49 years with a BMI 18–32 kg/m²

Subjects were assigned to treatment with either DCV + CSP (Group 1; N = 14) or DCV + TAC (Group 2; N = 14), administered alone and in combination (Figure 1)

- Group 1 received oral CSP 400 mg QD on Days 1 and 9 and oral DCV 60 mg QD on Days 4–11
- Group 2 received oral TAC 5 mg QD on Days 1 and 13, and oral DCV 60 mg QD on Days 8–19
- Group 1 serial PK sampling to determine CSP (measured pre-dose to 72 hours) and DCV (measured pre-dose to 24 hours post-dose) blood levels was initiated on Days 1 and 9, and 8 and 9, respectively
- Group 2 serial PK sampling to determine TAC (measured pre-dose to 168 hours) and DCV (measured pre-dose to 24 hours post-dose) blood levels was initiated on Days 1 and 13, and 12 and 13, respectively
- Subjects were required to fast prior to (10 hours) and after (4 hours) dosing on PK sampling days; standardized meals were provided
- Plasma levels of CSP, TAC, and DCV were determined by validated LC-MS/MS assays

Daclatasvir Pharmacokinetics in Healthy Subjects: No Clinically Relevant Drug–Drug Interaction With Either Cyclosporine or Tacrolimus

Bifano M,¹ Adamczyk R,¹ Hwang C,¹ Kandoussi H,² Marion A,³ Bertz RJ¹

¹Bristol-Myers Squibb, Hopewell, NJ; ²Bristol-Myers Squibb, Lawrenceville, NJ; ³ICON Development Solutions, Omaha, NE

- Subject demographic characteristics are presented in Table 1

Table 1. Demographic Characteristics

Parameter	Group 1 (N = 14) DCV 60 mg / CSP 400 mg	Group 2 (N = 14) DCV 60 mg / TAC 5 mg		
Age, mean years (SD)	34.8 (7.1)	34.5 (8.7)		
Male, n (%)	12 (85.7)	10 (71.4)		
BMI, mean kg/m ² (SD)	28.5 (2.7)	26.3 (3.7)		
Race, n (%)				
White	6 (42.9)	10 (71.4)		
Black / African American	7 (50.0)	4 (28.6)		
Other	1 (7.1)	0 (0.0)		

The single-dose PK profile of CSP was unaffected by concomitant administration with multiple doses of DCV (Figure 2a)

- The GMR 90% CIs for CSP AUC_{0- ∞}, AUC_{0- τ} and C_{max} were contained within the accepted boundary for no significant interaction (0.80–1.25) and included 1 (Tables 2 and 3) CSP T_{max}, T_½, and CLT/F were comparable during both treatments

N = 14 for all measurements; ND, not determined; underscore represents analyte of interest; all measurements are geometric means (CV %).

Table 3. Statistical Analyses

	Pharmacokinetic Parameters						
Comparison	C _{max}	AUC _{0-T}	AUC _{tau}	AUC _{0-∞}	C ₂₄		
Group 1							
<u>CSP</u> + DCV vs CSP alone	0.96 (0.91, 1.02)	1.02 (0.96 <i>,</i> 1.08)	ND	1.03 (0.97 <i>,</i> 1.09)	ND		
<u>DCV</u> + CSP vs DCV alone	1.04 (0.94 <i>,</i> 1.15)	ND	1.40 (1.29 <i>,</i> 1.53)	ND	1.56 (1.41, 1.71)		
Group 2							
<u>TAC</u> + DCV vs TAC alone	1.05 (0.90, 1.23)	1.00 (0.87 <i>,</i> 1.15)	ND	1.00 (0.88 <i>,</i> 1.13)	ND		
<u>DCV</u> + TAC vs DCV alone	1.07 (1.02, 1.12)	ND	1.05 (1.03 <i>,</i> 1.07)	ND	1.10 (1.03, 1.19)		

N = 14 for all measurements; ND, not determined; underscore represents analyte of interest; all measurements are geometric mean ratios (90% Cls).

 The single-dose PK profile of TAC was unaffected by concomitant administration with multiple doses of DCV (Figure 3a)

- The GMR 90% CIs for TAC AUC_{$0-\infty$}, AUC_{0-T} and C_{max} were contained within 0.80–1.25</sub>and included 1 (Tables 2 and 3)

- CSP T_{max}, T_{1/2}, and CLT/F were comparable during both treatments

Corresponding author: Marc Bifano (marc.bifano@bms.com)

3. **RESULTS** (cont)

The steady-state PK parameters of DCV were unaffected by concomitant administration with a single dose of TAC (**Figure 3b**)

- The GMR 90% CIs for DCV C_{max} , AUC_{tau}, and C_{24} were contained within 0.80–1.25 (Tables 2 and 3)

- Median T_{max} was 1 hour during both treatments

Table 4. Treatment-Related AEs Occurring in ≥ 2 Subjects in Either Group

	Group 1 Treatment Phase			Group 2 Treatment Phase		
Preferred term, N (%)	CSP	DCV	CSP + DCV	TAC	DCV	TAC + DCV
Feeling hot	6 (42.9)	0	7 (50.0)	0	0	0
Headache	3 (21.4)	3 (21.4)	1 (7.1)	0	2 (14.3)	0
Diarrhea	3 (21.4)	1 (7.1)	2 (14.3)	0	0	0
Nausea	1 (7.1)	0	3 (21.4)	0	1 (7.1)	1 (7.1)
Sinus congestion	0	2 (14.3)	0	0	0	0
Constipation	0	0	0	2 (14.3)	0	0

N = 14 in all treatment groups and treatment group phases

- A summary of treatment-related AEs is presented in Table 4
- There were no deaths; serious AEs; AEs leading to discontinuation; or AEs relating to clinical laboratory results, vital signs, ECG abnormalities, or physical examinations
- A total of 21 of 28 subjects reported AEs
- The majority of AEs (58 AEs in 20 subjects) were assessed as related to study treatment
- In both treatment groups, the number of AEs was similar during treatment phases

4. CONCLUSIONS

- No clinically relevant DDIs were observed when DCV was co-administered with either CSP or TAC
- Concomitant administration of CSP results in a modest but clinically insignificant increase in DCV exposure
- Co-administration of DCV with either CSP or TAC was well tolerated in healthy subjects
- These data suggest that dose adjustments may not be warranted during co-administration of DCV with CSP or TAC
- DCV-based regimens may provide new therapeutic modalities for the management of HCV infection in LT recipients who currently have limited treatment options

5. REFERENCES

- Verna ED, et al. Clin Liv Dis 2006;10:919–929.
- Li DY, et al. Int J Clin Pharmacol Ther 2013;51:466–474. Neoral[™] (cyclosporin) product information. Novartis Pharmaceutics. September 2013.
- Forman LM, et al. Gastroenterology 2002;122:889–896.
- Gane EJ, et al. Gastroenterology 1996;110:167–177.
- Guillouche P. et al. Aliment Pharmacol Ther 2011;33:163–174.
- Bzowej N, et al. Liver Transpl 2011;17:528–538.
- Selzner N, et al. J Hepatol 2011;55:207–217.
- Hulskotte E, et al. Hepatology 2012;56:1622–1630.
- 10. Garg V, et al. Hepatology 2011;54:20–27.

- 11. Gao M, et al. Nature 2010;465:96–102.
- 12. Bifano M, et al. 61st AASLD; Oct 29–Nov 2, 2010; Boston, MA, USA. Abstract 827.
- 13. Bifano M, et al. 19th CROI; Mar 5–8, 2012; Seattle, WA, USA. Abstract 618.
- 14. Bifano M, et al. 62nd AASLD; Nov 4–8, 2011; San Francisco, CA, USA. Abstract 1340.
- **15**. Nettles RE, *et al. Hepatology* **2011**;54:1956–1965. 16. Bifano M, et al. 62nd AASLD; Nov 4–8, 2011;
- San Francisco, CA, USA. Abstract 1362. 17. Fontana RJ, et al. Am J Transplant 2013;13:1601–1605.
- 18. Hughes EA, et al. Liver Transpl 2012;18:1053–1059.

6. DISCLOSURES

- This study was sponsored by Bristol-Myers Squibb
- M Bifano, R Adamczyk, C Hwang, H Kandoussi, and RJ Bertz are employees and may also be stockholders of Bristol-Myers Squibb
- A Marion is an employee and may also be a stockholder of ICON
- Editorial assistance was provided by Andrew Stead of Articulate Science and was funded by Bristol-Myers Squibb This presentation includes discussion of investigational drugs not approved for use in humans