All-Oral Fixed-Dose Combination Therapy With Daclatasvir/Asunaprevir/Beclabuvir, ± Ribavirin, for Patients With Chronic HCV Genotype 1 Infection and Compensated Cirrhosis: UNITY-2 Phase 3 SVR12 Results

Muir AJ,¹ Poordad F,² Lalezari J,³ Everson GJ,⁴ Dore GJ,⁵ Kwo P,⁶ Hézode C,⁷ Pockros PJ,⁸ Tran A,⁹ Ramji A,¹⁰ Yang R,¹¹ Hughes EA,¹¹ Swenson ES,¹² Yin PD¹² on behalf of the UNITY-2 Study Team

¹Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC; ²Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX; ³Quest Clinical Research, San Francisco, CA; ⁴University of Colorado School of Medicine, Denver, CO; ⁵Kirby Institute, UNSW Australia, Sydney, NSW, Australia; ⁶Indiana University School of Medicine, Indianapolis, IN; ⁷Hôpital Henri Mondor, Université Paris-Est, Créteil, France; ⁸Scripps Clinic, La Jolla, CA; ⁹Centre Hospitalier Universitaire de Nice, Nice, France; ¹⁰University of British Columbia, Vancouver, BC, Canada; ¹¹Bristol-Myers Squibb, Princeton, NJ; ¹²Bristol-Myers Squibb, Wallingford, CT.

Background

- Cirrhosis can reduce response to HCV therapies potent,
 well-tolerated all-oral regimens are needed
- DAA regimens, even with ribavirin, can require > 12 weeks of treatment to maximize SVR rates in patients with cirrhosis^{1,2}
- Daclatasvir + asunaprevir + beclabuvir (BMS-791325) achieved SVR12 in > 92% (GT 1) or 100% (GT4) of treatment-naive patients with 12 weeks of treatment (phase 2)^{3,4}
- Phase 3 UNITY-2 study evaluated this regimen as a fixed-dose combination, with or without ribavirin, in treatment-naive or -experienced patients with GT 1 infection and compensated cirrhosis

¹Poordad F, et al. New Eng J Med 2014; 370:1973-1982.

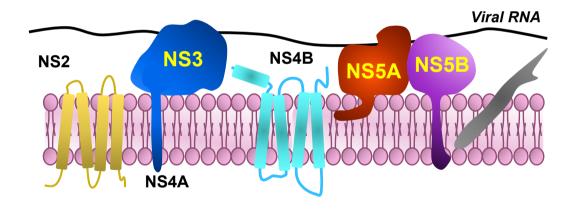
²Afdhal N, et al. New Engl J Med 2014; 370:1483-1493.

³Everson GT, et al. AASLD 2013; Oral LB-1.

⁴Hassanein T, et al. J Hepatol 2014; 60(suppl1):S472.

All-Oral DCV-TRIO Regimen

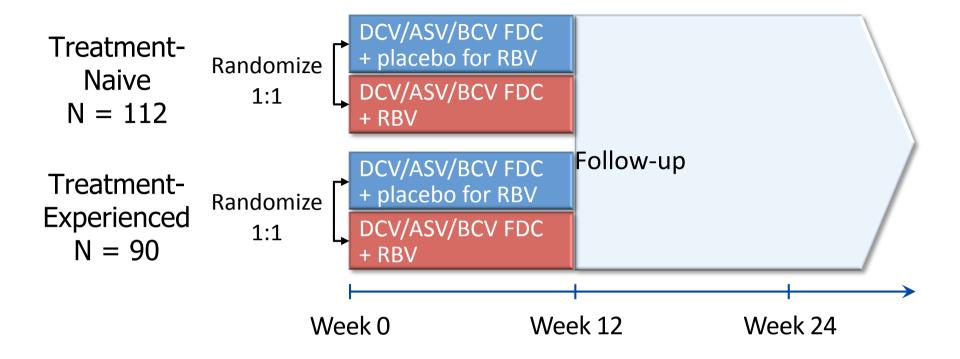
Daclatasvir (DCV)


- Pangenotypic^a NS5A inhibitor, low potential for drug—drug interactions
- Safe and well tolerated in > 6000 subjects
- Approved in Europe and Japan; under regulatory review in the US

Asunaprevir (ASV)

- NS3 protease inhibitor
- Clinical data in GT 1 and 4

Beclabuvir (BCV)


- Non-nucleoside NS5B polymerase inhibitor
- Clinical data in GT 1 and 4

DCV / ASV / BCV co-formulated as twice-daily fixed-dose combination (FDC)

^a Pangenotypic: GT 1-6 in vitro and GT 1-4 in clinical trials

UNITY-2: Randomized, Double-Blind, Phase 3 Study

- Primary efficacy assessment: SVR12
 - HCV RNA < LLOQ (25 IU/mL) TD or TND at posttreatment Week 12
- Twice-daily fixed-dose combination (FDC)
 - DCV 30 mg / ASV 200 mg / BCV 75 mg
 - With or without weight-based ribavirin twice-daily

Inclusion Criteria

Patients

- Adults with GT 1a or 1b infection
- Compensated Child-Pugh class A cirrhosis, confirmed by
 - Liver biopsy (METAVIR F4), or
 - Fibroscan > 14.6 kPa, or
 - FibroTest ≥ 0.75 with APRI (AST/ platelet ratio index) > 2
- Platelets > 50,000/mm³
- INR < 1.7
- Albumin > 3.5 g/dL

Two Cohorts

Treatment-Naive

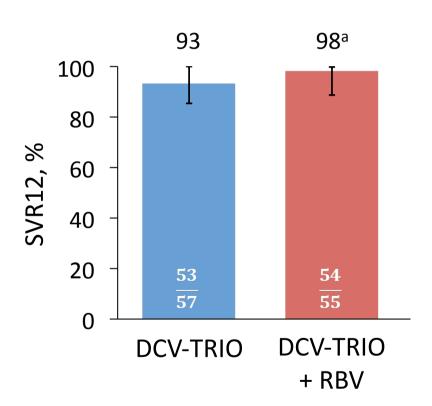
 No prior exposure to IFN, RBV or any DAA or host-targeted antiviral

Treatment-Experienced

 Prior exposure to pegIFN/RBV and/or select DAAs* or hosttargeted antivirals

^{*} DAAs excluded: Prior exposure to NS5B thumb-1 inhibitors, NS3 inhibitors, or NS5A inhibitors

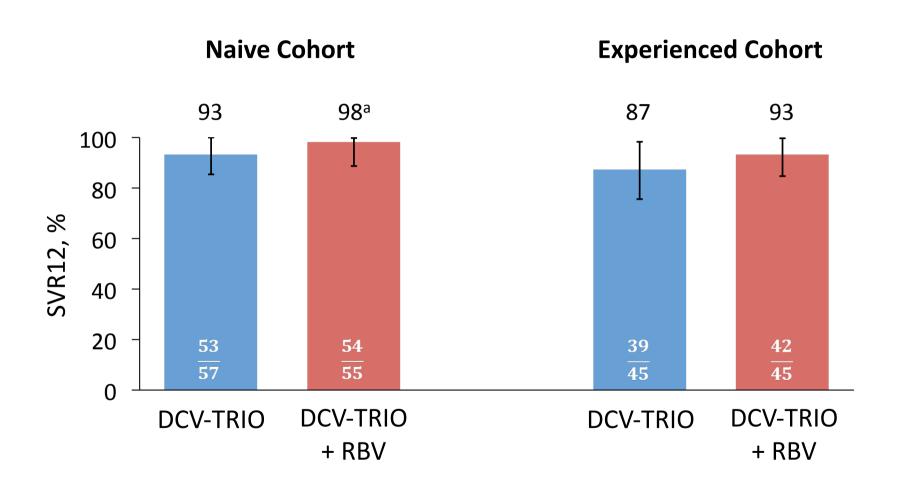
Demographic and Baseline Disease Characteristics


		Treatment-naive		Treatment-experienced		
Parameter		DCV-TRIO N = 57	DCV-TRIO+RBV N = 55	DCV-TRIO N = 45	DCV-TRIO+RBV N = 45	
Age, median years (range)		58 (25-75)	59 (35-73)	59 (19-76)	60 (48-73)	
Male, n (%)		39 (68)	35 (64)	32 (71)	27 (60)	
Race, n (%)	White	49 (86)	51 (93)	41 (91)	37 (82)	
Black/Afr	Black/Afr Amer		6 (11)	2 (4)	6 (13)	
	Other	2 (4)	3 (5)	2 (4)	2 (4)	
HCV RNA ≥ 800K IU/mL, n (%)		47 (82)	41 (75)	43 (96)	41 (91)	
HCV GT subtype ^a	1 a	40 (70)	39 (71)	35 (78)	35 (78)	
n (%)	1b	17 (30)	15 (27)	10 (22)	10 (22)	
	6	0	1 (2)	0	0	
IL28B genotype, n (%)	CC	13 (23)	18 (33)	15 (33)	9 (20)	
(rs 12979860)	CT	30 (53)	35 (64)	20 (44)	27 (60)	
	TT	13 (23)	2 (4)	10 (22)	9 (20)	
Not reported		1 (2)	0	0	0	

^aOne patient (naive DCV-TRIO group) had GT 6 infection.

- Cirrhosis confirmed by liver biopsy (n = 108), Fibroscan (n = 79), or FibroTest/APRI (n = 15)
- Platelets < 100,000/mm³ in 53 patients (26%)
- Experienced cohort (N = 90): 35 (39%) prior null responders, 8 (9%) partial responders, 16 (18%) relapsers, and 31 (34%) with other prior nonresponse

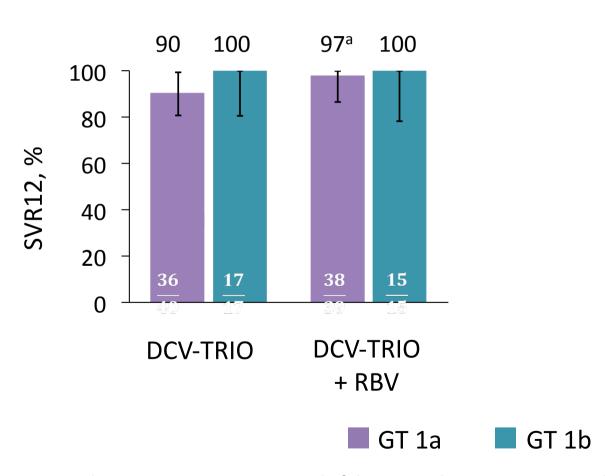
SVR12 (mITT)


Naive Cohort

^aOne patient with HCV RNA <LLOQ TND at end of therapy and posttreatment Week 4 had missing data at posttreatment Week 12.

Error bars indicate 97.5% confidence intervals.

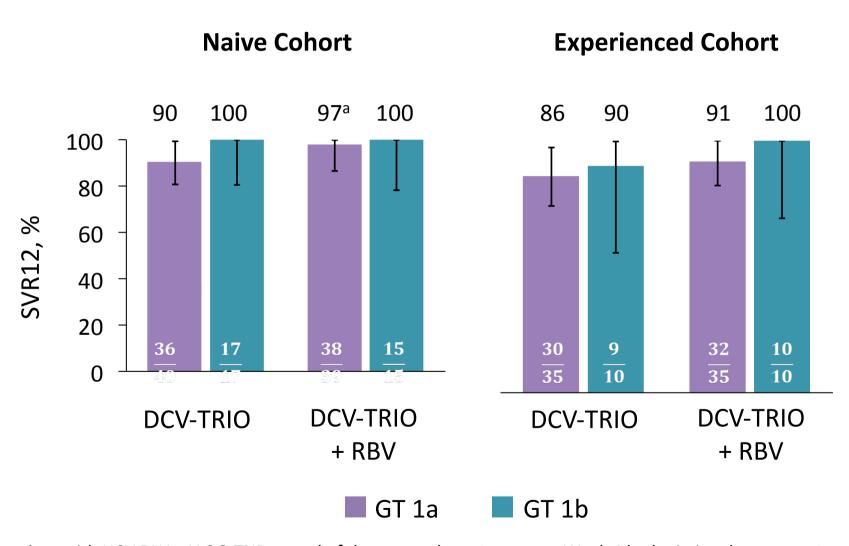
SVR12 (mITT)



Error bars indicate 97.5% confidence intervals.

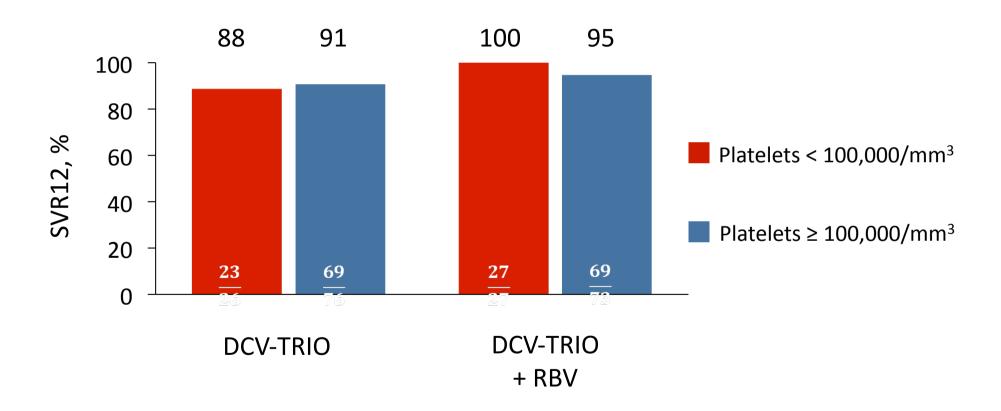
^aOne patient with HCV RNA <LLOQ TND at end of therapy and posttreatment Week 4 had missing data at posttreatment Week 12.

SVR12 by GT 1 Subtype



^aOne patient with HCV RNA <LLOQ TND at end of therapy and posttreatment Week 4 had missing data at posttreatment Week 12.

Error bars indicate 95% confidence intervals.


SVR12 by GT 1 Subtype

^aOne patient with HCV RNA <LLOQ TND at end of therapy and posttreatment Week 4 had missing data at posttreatment Week 12.

Error bars indicate 95% confidence intervals.

SVR12 by Baseline Platelets

Comparable responses by gender, age, baseline HCV RNA, and IL28B genotype

Virologic Outcomes

	Treatme	ent-naive	Treatment-experienced		
Outcome, n (%)	DCV-TRIO N = 57	DCV-TRIO + RBV N = 55	DCV-TRIO N = 45	DCV-TRIO + RBV N = 45	
SVR12	53 (93)	54 (98)	39 (87)	42 (93)	
On-treatment virologic failure	0	0	1 (2)	2 (4)	
Relapse	4 (7)	0	5 (11)	1 (2)	
Missing data	0	1 (2)	0	0	

Resistance Analyses

Resistance-associated variants (RAVs) at baseline^a

- NS5A (28, 30, 31, 93) and NS3 (168) RAVs do not appear to impact SVR12
 - 26/28 patients with NS5A RAVs achieved SVR12
 - 2/2 patients with NS3 RAVs achieved SVR12
- NS5B-P495 variants not detected at baseline

Resistance Analyses

Resistance-associated variants (RAVs) at baseline^a

- NS5A (28, 30, 31, 93) and NS3 (168) RAVs do not appear to impact SVR12
 - 26/28 patients with NS5A RAVs achieved SVR12
 - 2/2 patients with NS3 RAVs achieved SVR12
- NS5B-P495 variants not detected at baseline

Emergent RAVs in virologic failures^a

Sequencing data are currently available for 8 of 13 virologic failures

Patient	GT	Outcome	NS5A	NS3	NS5B
1	1a	On-treatment failure	Q30R/H	None	None
2	1a	On-treatment failure	Q30E	R155K	P495P/L
3	1a	On-treatment failure	Q30E	R155K	P495S
4	1a	Relapse	None	None	None
5	1a	Relapse	Q30H	R155K	None
6	1a	Relapse	Y93N	R155K	None
7	1a	Relapse	Q30R, L31M/I	R155K/R, D168D/E	A421V
8	1b	Relapse	Y93H	None	None

^a Population sequencing

Adverse Events

Event, n (%)	DCV-TRIO N = 102	DCV-TRIO + RBV N = 100
Serious AEs ^a	2 (2.0)	7 (7.0)
Discontinued RBV due to AE ^b	0	2 (2.0)
Discontinued all treatment due to AE ^c	0	1 (1.0)
AEs (any grade) in ≥ 10% of patients		
Fatigue	12 (11.8)	28 (28.0)
Headache	17 (16.7)	23 (23.0)
Nausea	14 (13.7)	17 (17.0)
Diarrhea	13 (12.7)	9 (9.0)
Insomnia	6 (5.9)	15 (15.0)
Pruritus	6 (5.9)	15 (15.0)

^a Three SAEs considered treatment-related: anemia, ALT and total bilirubin elevations, RBV overdose.

^b Two patients discontinued RBV due to anemia or cough; both achieved SVR12.

^c Discontinued all study medication (due to anemia followed by ALT and total bilirubin elevations); achieved SVR12.

Laboratory Abnormalities

Treatment-Emergent Grade 3/4 Lab Abnormalities, n (%)	DCV-TRIO N = 102	DCV-TRIO + RBV N = 100
Hemoglobin < 9.0 g/dL	0	5 (5.0)
Platelets < 50 × 10 ⁹ /L	2 (2.0)	2 (2.0)
Leukocytes < 1.5 x 10 ⁹ /L	0	1 (1.0)
Lymphocytes < 0.5 × 10 ⁹ /L	1 (1.0)	3 (3.0)
Neutrophils < 0.75 × 10 ⁹ /L	1 (1.0)	1 (1.0)
ALT > 5.0 x ULN	3 (2.9)	1 (1.0)
AST > 5.0 x ULN	2 (2.0)	1 (1.0)
Total bilirubin > 2.5 x ULN	0	3 (3.0)
Total lipase > 3.0 x ULN	5 (4.9)	1 (1.0)

- One patient had concurrent ALT \geq 3 x ULN and total bilirubin \geq 2 x ULN at Week 6 and discontinued treatment
 - Maximum values: ALT, 992 U/L; total bilirubin, 2.4 mg/dL; direct bilirubin, 1.8 mg/dL;
 INR, 1.55
 - Asymptomatic; lab abnormalities resolved after discontinuation of study drugs;
 achieved SVR12

Summary

- High SVR12 rates after 12 weeks of treatment with DCV/ASV/BCV fixed-dose combination (DCV-TRIO), with or without RBV, in patients with GT 1 and compensated cirrhosis
 - 98% in naive, 93% in experienced patients with DCV-TRIO + RBV
 - 93% in naive, 87% in experienced patients with DCV-TRIO alone
- Addition of RBV decreased relapse frequency in GT 1a
- Baseline RAVS do not appear to impact response
- DCV-TRIO ± RBV was generally safe and well tolerated

Safety and efficacy of DCV-TRIO in GT 1 non-cirrhotic patients (UNITY-1) are reported at this congress — Late-Breaker Poster LB-7

Acknowledgments

- The authors thank the patients, their families, and staff at all study sites
- The authors thank all UNITY-2 investigators

USA	Ira Jacobson	Edmund Tse	Alnoor Ramji	France
Leslie Bank	Paul Kwo	John M Vierling	Edward Tam	Yves Benhamou
Kimberly Beavers	Jacob P Lalezari	Joseph L Yozviak		Marc Bourliere
Michael Bennett	James M Levin		Australia	Christophe Hézode
Stanley Cohen	Jonathan Mccone	Canada	Peter Angus	Regine Rouzier
James Cooper	Andrew Muir	Brian Conway	Gregory Dore	Lawrence Serfaty
Craig Dietz	Paul Pockros	Magdy Elkhashab	Lindsay Mollison	Albert Tran
Kyle P Etzkorn	Fred Poordad	Wayne Ghesquiere	Michael Ryan	
Gregory Everson	Nancy Reau	Richard Lalonde	William Sievert	
Bradley Freilich	Robert W Reindollar	Roger P LeBlanc	Katherine Stuart	
Robert Herring, Jr	Howard Schwartz	Samuel Lee	Alexander Thompson	
Federico Hinestrosa	Aasim Sheikh	Daniele Longpre		

- The authors thank Peggy Hagens of Bristol-Myers Squibb for support of study execution and Fiona McPhee for virologic analyses
- ClinicalTrials.gov registration number NCT01455090 (Study AI443-113)
- Editorial support was provided by R Boehme of Articulate Science and funded by Bristol-Myers Squibb