Prevalence and Impact of Baseline Resistance-Associated Variants on the Efficacy of Elbasvir/Grazoprevir in Hepatitis C **Genotype 1-Infected Japanese Patients**

Introduction

- Elbasvir (EBR) is a potent hepatitis C virus (HCV) NS5A inhibitor, and grazoprevir (GZR) is a potent NS3/4A inhibitor
- The Phase 3 portion of a Phase 2/3 study evaluated the efficacy and safety of the combination of EBR/GZR given once daily in genotype 1 (GT1)-infected, mostly GT1b-infected treatment-naïve or IFN-experienced Japanese chronic hepatitis C (CHC) patients with or without cirrhosis
- In the full analysis set (FAS) population for GT1b patients, coadministration of EBR/GZR for 12 weeks resulted in SVR24 of 96.4%
- Only 1.8% (6/335) of GT1a patients were included, and all of them achieved SVR24
- EBR/GZR was largely safe and well tolerated

Objectives

In Japanese GT1b-infected patients with CHC, with or without cirrhosis, in the Phase 3 portion of a Japanese Phase 2/3 study:

- To evaluate the prevalence and types of NS3 and NS5A variants at baseline
- To determine the impact of baseline variants on treatment response in subjects treated with EBR/GZR
- To identify and characterize the post-treatment resistance-associated variants (RAVs) in virologic failures (VFs)

Methods

- Resistance analyses were conducted on the resistance analysis population (RAP), which included all subjects from the FAS population who either achieved SVR24 or met the criteria for VF (**Figure 1**)
- Four patients excluded from the RAP: 2 patients discontinued early due to adverse events (AEs) and 2 patients died before follow-up week 12
- Plasma samples from all patients at day 1, pre-dosing, and at follow-up visits in patients with confirmed VF were evaluated by population sequencing (Pop seq) of NS3 and NS5A genes
- These samples were further analyzed by whole-genome next-generation sequencing (NGS; also called deep sequencing) in duplicate

Figure 1. Resistance analysis population (RAP)

Table 1. Demographics

	Nonci	Noncirrhotic		
Factors	EBR + GZR (Immediate)	Placebo (Deferred)	EBR + GZR	
Total		223†	72‡	34
Gender	Male, n : Female, n	84 : 139	20 : 52	17:17
Age	Median years (range)	63 (21-80)	63 (34-80)	65.5 (43-79)
	<65, n (%)	119 (53%)	39 (54%)	15 (44%)
	≥65, n (%)	104 (47%)	33 (46%)	19 (56%)
HCV subtype, n (%)	GT1b	223 (100%)	72 (100%)	34 (100%)
Prior treatment, n (%)	Naïve	147 (66%)	48 (67%)	20 (59%)
	Intolerant to prior P/R	11 (5%)	3 (4%)	3 (9%)
	Relapse to prior P/R	39 (17%)	13 (18%)	6 (18%)
	Nonresponse to prior P/R	26 (12%)	8 (11%)	5 (15%)
IL28B, n (%)	Major (CC)	130 (58%)	43 (60%)	22 (65%)
(rs12979860)	Minor (TC)	83 (37%)	28 (39%)	12 (35%)
	Minor (TT)	10 (5%)	1 (1%)	0 (0%)
Baseline HCV RNA (range)	, median log IU/mL	6.3 (4.7-7.2)	6.3 (4.8-7.3)	6.5 (5.1-7.1)

Three patients excluded from the RAP: 2 patients discontinued early due to AE and 1 patient died before follow-up week 12. [‡]One patient excluded from the RAP: died before follow-up week 12.

Pop Seq Results

- The specific loci analyzed include NS3 amino acid positions 155, 156, and 168, specifically R155X*, A156S/T/V/F/G, and D168X*
- *X following a sequence position signifies that any variant (ie, different from the reference sequence) at that position is reported/ • The prevalence of baseline NS3 variants was 1.8% (6/325)
- SVR24 rates in GT1b subjects without or with baseline NS3 variants were 97.5% (311/319) or 100% (6/6), respectively (Table 2)
- There was no impact of baseline NS3 variants on SVR24 rates

Figure 2/Table 2. Prevalence and impact of baseline NS3 variants on efficacy

	SVR24 (%)				
Population	Overall Efficacy in Subjects With Sequence in RAP	NS3 Variants‡ Not Detected	NS3 Variants [‡] Detected		
Overall RAP	317/325 (97.5%)	311/319 (97.5%)	6/6 (100%)		

SVR24 (%) = number of subjects achieving SVR24/total number of subjects (RAP). [‡]NS3 variants: R155X, A156S/T/V/F/G, and D168X (X following a sequence position signifies that any at that position is reported) detected by population sequencing (sensitivity threshold: 25%).

- The specific loci analyzed include NS5A amino acid positions 28, 30, 31, and 93, specifically L28T/V/A, R30E/H/G/K/L/D, L31M/V/F, and Y93C/H/N/S
- The prevalence of baseline NS5A variants was 19.7% (64/325)
- The most common baseline NS5A polymorphisms in the overall RAP were variants at position 93 (**Figure 3**)
- SVR24 rates in GT1b subjects without or with baseline NS5A variants were 98.9% (258/261) or 92.2% (59/64), respectively (**Table 3**)

¹Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan; ²Department of Hepatology, Toranomon Hospital, Tokyo, Japan; ³Department of Gastroenterology, Sapporo Kosei General Hospital, Hokkaido, Japan; ⁴Department of Gastroenterology and Metabolism, Hiroshima University, Hiroshima, Japan; ⁵MSD K.K., Tokyo, Japan; ⁶Merck & Co., Inc., Kenilworth, NJ, USA

Results

efficacy

	SVR24 (%)					
Population	Overall Efficacy in Subjects With Sequence in RAP	NS5A Variants [‡] Not Detected	NS5A Varia Detecte			
Overall RAP	317/325 (97.5%)	258/261 (98.9%)	59/64 (92.			

- All L31M and all Y93H detected at failure point persisted through FU24

Table 4. Virologic failures and detected RAVs by Pop Seq

Subject	Baseline		At Virologic Failure		Follow-up Week 4		Follow-up Week 12		Folle We	
	NS3	NS5A	NS3	NS5A	NS3	NS5A	NS3	NS5A	NS3	
#1	WT	WT	WT	Y93H	WT	Y93H	WT	Y93H	WT	ſ
#2	WT	L31M	WT	(L31M), Y93H	WT	(L31M), Y93H	WT	(L31M), Y93H	WT	
#3	WT	WT	NA	NA	NA	NA	WT	Y93H	WT	
#4	WT	Y93H	WT	(Y93H)	TND [†]	TND [†]	WT	(Y93H)	WT	Ī
#5	WT	Y93H	WT	L31M, (Y93H)	TND [†]	TND [†]	WT	L31M, (Y93H)	WT	
#6	WT	WT	WT	L31M, Y93H	TND [†]	TND [†]	WT	L31M, Y93H	WT	
#7	WT	L31M, Y93H	WT	(L31M), (Y93H)	TND [†]	TND [†]	WT	(L31M), (Y93H)	WT	
#8	WT	Y93H	WT	L31V, (Y93H)	TND [†]	TND [†]	WT	L31V, (Y93H)	WT	

Yoshito Itoh¹; Fumitaka Suzuki²; Yoshiyasu Karino³; Kazuaki Chayama⁴; Naoyoshi Yatsuzuka⁵; Etsuo Yodoya⁵; Go Fujimoto⁵; Stuart Black⁶; Ernest Asante-Appiah⁶; Janice Wahl⁶; Michael Robertson⁶; Hiromitsu Kumada²