Background

GS-9131 is an NRTI candidate for treatment of patients with resistance to other NRTIs. HIV reverse transcription is inhibited by GS-9131 by chain termination. In this study, we employed cell culture models to shed light on the ability of escape mutants to emerge under increasing drug pressure.

Methods

Cord blood mononuclear cells (CBMCs) and MT-2 cells were infected with clinical isolates and passaged in increasing concentrations of GS-9131 and tenofovir disoproxil fumarate (TDF). In CBMCs, virus growth was monitored by weekly determinations of reverse transcriptase (RT). For MT-2 cells, supernatants were collected at the peak of infection by cytopathic effect scoring. In order to identify alterations in the RT region, viral RNA was extracted from tissue culture supernatants and sequenced.

Results

After 40 weeks of sustained drug treatment, none of the CBMC viral cultures tested yielded major resistance mutations. Despite the lack of changes in the RT region associated with resistance to GS-9131 or TDF, most of the isolates were able to endure moderate to very high concentrations of the drugs, 500-20,000 -fold increases for GS-9131 and 100-200,000 -fold increase for TDF. The A62V and D67N secondary mutations arose in two isolates with GS-9131 and TDF. Using 3TC as a control, the M1841 or V mutations rapidly arose in most viruses. Previous studies with GS-9148, for which GS-9131 is a pro-drug, were done in MT-2 cells, and some resistance patterns were identified. In our experiment using MT-2 cells, no major resistance pathways emerged through 18 weeks. One isolate did select for the L187M mutation, which was also identified in the previous study.

Identification of drug resistance mutations arising in patient-derived clinical isolates grown in cord blood mononuclear in the presence of increasing concentrations of GS-9131 as compared to TDF and 3TC

Drug dose escalations in MT-2 cells infected with seven HIV-1 primary isolates

Identification of drug resistance mutations arising in patient-derived clinical isolates grown in MT-2 cells in the presence of increasing concentrations of GS-9131 as compared to TDF.

Drug dose escalations were performed in parallel with GS-9131, TDF or 3TC for 18-50 weeks. Sequencing revealed the failure to acquire resistance to GS-9131 in four subtype B and four non-B subtype isolates in CBMCs despite high dose drug escalations over the course of 50 weeks. In contrast, acquisition of M184V or M184V arose at weeks 8-44 in the 3TC selections leading to >100x resistance.

Patient-derived viral isolate Viral Subtype (cluster size) GS-9131 TDF

Patient isolate Viral subtype (clusture size) GS-9131 TDF

GS-9131

Family range of activity against HIV-1 subtypes

Pro-drug of the GS-9148 with low potential for mitochondrial and renal toxicity

Maintains in vitro activity against HIV-1 viruses harboring most major NRTI resistance mutational pathways

GS-9148-Diphosphate inhibits HIV reverse transcription by chain termination

Phenotypic drug susceptibility in CBMCs of the 5326 viral variant acquiring L187M or P294S in cell culture selections with GS-9131

Phenotypic Profiling of HIV-1 Site-Directed Recombinants Containing L187 M/F mutations

Two methods were employed in order to obtain a better picture of the ability of GS-9131, a drug in development, to put pressure on viruses to escape. The lack of rapid emergence of drug resistance mutations or high-level resistance in emergent variants indicates that GS-9131 is a promising antiretroviral for HIV treatment, which has also been shown to be suitable for individuals harboring NRTI mutations. Its versatility for use in combination with other drugs may provide more precise and potent options to patients with limitations due to NRTI resistance.

Conclusion

The authors thank all participants of the Montreal PWhA cohort, Mario Legault, coordinator of the cohort and all participating physicians.