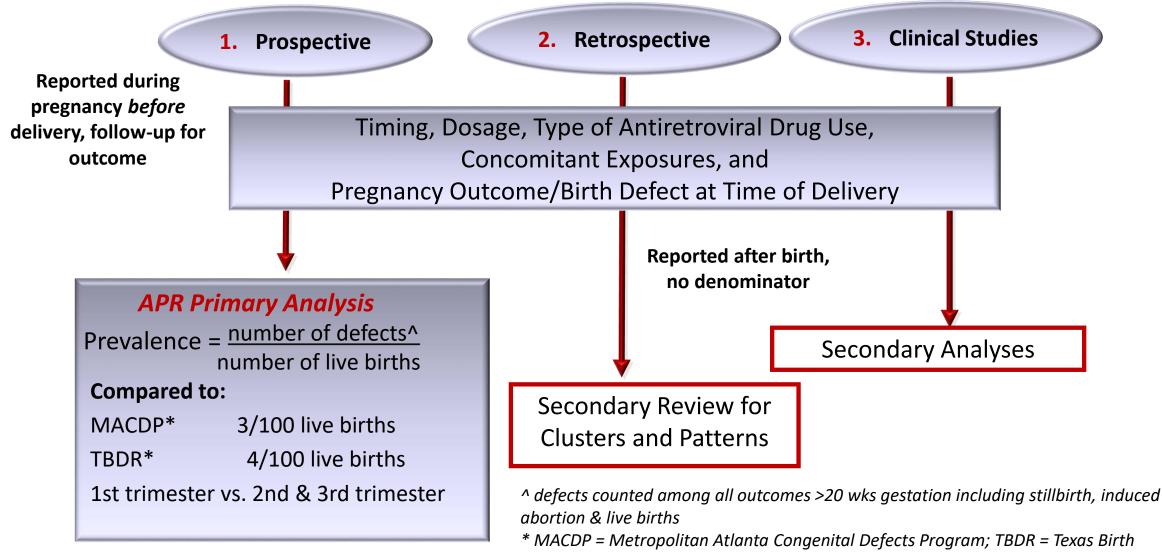
### **SCIENCE SPOTLIGHT**<sup>™</sup>

## The Antiretroviral Pregnancy Registry: 30 years of Monitoring for Congenital Anomalies

### William R. Short, MD, MPH, FIDSA


Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Disclosure: Consultant: ViiV. Speaking Honorarium: ViiV, Janssen

# The Antiretroviral Pregnancy Registry

- The Antiretroviral Pregnancy Registry (APR) is a voluntary, international, prospective exposure-registration cohort study
  - Started as Zidovudine in Pregnancy Registry in 1989; became APR in 1993
  - Currently 29 sponsoring ARV manufacturers
  - Overseen by an independent Advisory Committee
  - As of July 31, 2020, include >20,437 live births with antiretroviral (ARV) exposure
- Designed to assist clinicians and patients in weighing potential risks and benefits of HIV treatment used during pregnancy
  - Monitors prenatal exposures to ARV drugs to detect a potential increase in the risk of birth defects
  - 150 ARV drugs: 57 brand-name single-entity drugs or fixed-dose combinations; 94 generic versions
- APR Objectives:
  - Provide early warning signals of major teratogenicity
  - Estimate prevalence of major birth defects and compare to the general population
  - Supplement animal toxicology, clinical, and epidemiological study data

## Antiretroviral Pregnancy Registry Analysis



Defects Registry

## **Overall Birth Defect Rate**

#### Confidence Intervals for Birth Defects – All Prospective Registry Cases with Follow-up Data Closed Through 31 July 2020

| Number of Live Births         | 20,437     |
|-------------------------------|------------|
| Number of Live Births with at |            |
| least one defect              | 580 (2.8%) |

95% Confidence Intervals for % of Birth Defects for exposures in:

| First Trimester                                    | 304/10,754 | (2.8%)<br>(95% CI: 2.5–3.2%) |
|----------------------------------------------------|------------|------------------------------|
| Second/Third Trimester                             | 274/9,680  | (2.8%)<br>(95% CI: 2.5–3.2%) |
| Any Trimester                                      | 580/20,437 | (2.8%)<br>(95% CI: 2.6–3.1%) |
| Relative Risk<br>(first vs second/third trimester) | 1.00       | (95% CI: 0.85, 1.17)         |

Due to unknown trimester of exposure data for 2 case(s) with birth defects, specific counts may not sum to the overall total

## APR Drug-Specific Birth Defect Rates\*

Prevalence of Birth Defects (95% CI): 1 January 1989 – 31 July 2020 **First Trimester Exposure** 

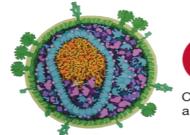
|                         |                  |                |              | Metropolitan A | Metropolitan Atlanta Texas Birth |  |
|-------------------------|------------------|----------------|--------------|----------------|----------------------------------|--|
|                         |                  |                |              | Congenital D   | efects Defects Registry          |  |
|                         |                  |                |              | Program        | Delects Registry                 |  |
|                         |                  |                |              | riogran        | S SAT                            |  |
| Def                     | ects/Live Births | Prevalence (%) | Lower 95% CI | Upper 95% Cl   |                                  |  |
|                         |                  |                |              |                |                                  |  |
| Lamivudine -            | 168/5398         | 3.11           | 2.66         | 3.61           |                                  |  |
| Tenofovir DF -          | 105/4388         | 2.39           | 1.96         | 2.89           |                                  |  |
| Zidovudine -            | 136/4222         | 3.22           | 2.71         | 3.80           |                                  |  |
| Emtricitabine -         | 99/3788          | 2.61           | 2.13         | 3.17           |                                  |  |
| Ritonavir -             | 79/3417          | 2.31           | 1.83         | 2.87           | . <del>  •  </del>               |  |
| Lopinavir -             | 30/1435          | 2.09           | 1.41         | 2.97           |                                  |  |
| Atazanavir -            | 32/1424          | 2.25           | 1.54         | 3.16           |                                  |  |
| Abacavir -              | 42/1342          | 3.13           | 2.26         | 4.21           |                                  |  |
| Nelfinavir -            | 47/1212          | 3.88           | 2.86         | 5.12           |                                  |  |
| Nevirapine -            | 35/1169          | 2.99           | 2.09         | 4.14           |                                  |  |
| Efavirenz -             | 28/1160          | 2.41           | 1.61         | 3.47           |                                  |  |
| Stavudine -             | 21/811           | 2.59           | 1.61         | 3.93           |                                  |  |
| Darunavir -             | 22/625           | 3.52           | 2.22         | 5.28           |                                  |  |
| Rilpivirine -           | 7/533            | 1.31           | 0.53         | 2.69           |                                  |  |
| Dolutegravir -          | 17/512           | 3.32           | 1.94         | 5.26           |                                  |  |
| Raltegravir -           | 14/458           | 3.06           | 1.68         | 5.08           | 0                                |  |
| Cobicistat -            | 16/452           | 3.54           | 2.04         | 5.69           |                                  |  |
| Tenofovir Alafenamide - | 19/434           | 4.38           | 2.66         | 6.75           |                                  |  |
| Didanosine -            | 20/427           | 4.68           | 2.88         | 7.14           | <b>⊢</b> → <b>−</b> − <b>−</b>   |  |
| Elvitegravir -          | 11/359           | 3.06           | 1.54         | 5.42           |                                  |  |
| Indinavir -             | 7/289            | 2.42           | 0.98         | 4.93           |                                  |  |
| Telbiyudine -           | 3/254            | 1.18           | 0.24         | 3.41           |                                  |  |
| First Trimester APR     |                  | 2.83           | 2.52         | 3.16           | (H) 2.8% (Cl 2.5-3.2%)           |  |
| Any Trimester APR -     | 580/20437        | 2.84           | 2.61         | 3.07           |                                  |  |
| MACDP -                 |                  | 2.72           | 2.68         | 2.76           |                                  |  |
| TBDR -                  |                  | 4.17           | 4.15         | 4.19           | •                                |  |
|                         |                  |                |              |                |                                  |  |
|                         |                  |                |              |                | 0 1 2 3 4 5 6 7 8 9              |  |

\*For drugs meeting threshold of  $\geq$  200 1<sup>st</sup> trimester exposed pregnancies MACDP: Vertical solid line = upper 95% CI, 2.76% TBDR: Vertical dashed line = upper 95% CI, 4.19%

Prevalence (%)

## Conclusions

- The APR has not found a significant difference in CA prevalence overall or by trimester of exposure compared to population based surveillance systems
- A detailed review of cases for DDI, NFV, and TAF did not identify a pattern of CAs.
  The relevance of the statistical findings for DDI and NFV are unclear.


### **ADVISORY COMMITTEE CONSENSUS Statement (Precis)**

- The Antiretroviral Pregnancy Registry finds no apparent increases in frequency of defects with first trimester exposures compared to exposures starting later in pregnancy and no pattern to suggest a common cause; however, potential limitations of registries should be recognized.
- Providers are strongly encouraged to report eligible patients to <u>SM\_APR@APRegistry.com</u> or visit <u>www.APRegistry.com</u>

# The Antiretroviral Pregnancy Registry: 30 years of Monitoring for Congenital Anomalies

Jessica D. Albano PhD, MPH<sup>1</sup>, **William R. Short, MD, MPH**<sup>2</sup>, Angela E. Scheuerle MD<sup>3</sup>, Karen Beckerman MD<sup>4</sup>, Lynne Mofenson MD<sup>5</sup>, Vani Vannappagari PhD<sup>6</sup>.

<sup>1</sup>Syneos Health, Wilmington, NC, USA
 <sup>2</sup>The Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
 <sup>3</sup>University of Texas Southwestern Medical Center, Dallas, TX, USA
 <sup>4</sup>Carl Icahn School of Medicine at Mt Sinai, Bronx, NY, USA
 <sup>5</sup>Elizabeth Glaser Pediatric AIDS Foundation, Silver Spring, MD, USA
 <sup>6</sup>Epidemiology and Real World Evidence, ViiV Healthcare, Research Triangle Park, NC, USA



Conference on Retroviruses and Opportunistic Infections