

Immunogenicity and Prophylactic Efficacy of Arenavirus-Based SIV Vaccine in Macaques

Archana V. Boopathy,¹ Bhawna Sharma,¹ Daniela Deutschmann,² Hoa Truong,¹ Johnny Lee,¹ Jeffrey Murry,¹ Christian Callebaut,¹ Romas Geleziunas,¹ Wade Blair,¹ Klaus Orlinger,² Sarah Schmidt,² Henning Lauterbach,² Tariro Makadzange,¹ Sarah Ahmadi-Erber² ¹Gilead Sciences, Inc., Foster City, CA; ²Hookipa Pharma Inc., New York, NY

Introduction

- Although combination antiretroviral therapy is highly successful in treating and preventing HIV progression, there remains a need for therapeutic options that result in long-term immune mediated viral control and HIV cure
- HIV-infected long-term nonprogressors or elite controllers who maintain HIV viral load (VL) <50 copies/mL without treatment are characterized by robust, polyfunctional, and effective HIV-specific CD8⁺ T-cell responses, with proliferative capacity and reduced expression of exhaustion markers^{1,2}
- Role of CD8⁺ T cells in HIV/simian immunodeficiency virus (SIV) infection:
- In a Phase 2b trial testing the prophylactic efficacy of an adenovirus type 5 (Ad5)–based HIV vaccine (Vx), treatment-induced T cells were associated with reduced viremia³
- In SIV-infected rhesus macaques, SIV-specific CD8⁺ T cells have been associated with viral control and depletion of CD8⁺ T cells resulted in rapid rebound of virus⁴
- Different approaches have been developed to augment such CD8⁺ T-cell responses, including conserved element immunogen design, use of homologous or heterologous Vx platforms, modulating the dosing interval, and route of Vx delivery
- The choice of Vx platform is important for driving efficacy; to date, several Vx platforms have been tested in SIV models, including nucleic acid vectors and viral vectors⁵
- Arenavirus-based Vx vectors encoding SIV immunogens have shown robust immunogenicity in nonhuman primates⁶
- In an ongoing Phase 1/2 study (NCT04180215) in human papilloma virus 16⁺ cancer, arenavirus vectors induced strong tumor antigen-specific CD8 T-cell responses with favorable tolerability
- These arenavirus-based vectors have demonstrated low seroprevalence and have emerged as a promising viral vector-based immunotherapy platform in recent years due to their ability to incorporate multiple foreign antigens in their genomes, with the capacity to induce strong T-cell responses⁷

Objectives

- To assess the immunogenicity of multiple intramuscular (im) doses of artificial-Pichinde virus (artPICV)/artificial-lymphocytic choriomeningitis virus (artLCMV) vectors encoding SIVsmE543 viral antigens (group antigen [Gag], envelope [Env], and polymerase [Pol]) in healthy rhesus macaques
- To assess the efficacy of the artPICV/artLCMV Vx on intravenous (iv) SIV challenge of vaccinated animals by evaluating mean and set-point SIV VL

Methods

- Healthy rhesus macaques were immunized with replicating arenavirusbased vectors (artPICV and artLCMV) in alternating sequence, Ad5/modified vaccinia virus Ankara (MVA) vectors, or placebo; all viral vectors encoded SIVsmE543 Gag, Env, and Pol immunogens
- Vx dosing:
- artPICV and artLCMV vectors expressing SIVsmE543 Gag and Env were administered in the left quadricep muscle, whereas vectors expressing SIVsmE543 Pol were administered in the right quadricep muscle; animals received 1x10⁶ replication competent virus particles (RCV) of artPICV Gag, Env, and Pol1/Pol2 vectors, 4x10⁶ RCV of artLCMV Gag and Env, and 2x10⁶ RCV of artLCMV Pol1/Pol2
- Ad5 and MVA vectors expressing Env were administered in the left quadricep muscle, whereas vectors expressing Gag and Pol were administered in the right quadricep muscle; animals received 5x10¹⁰ virus particles for Ad5 vectors expressing SIVsmE543 Gag, Env, and Pol, and 1x10⁸ particle forming unit of MVA vectors expressing SIVsmE543 Gag, Env, and Pol
- In the placebo group, animals were administered placebo buffer solution containing 0.1% macague serum albumin in the left and right quadricep muscles

- Vx immunogenicity was assessed by SIV-specific interferon (IFN)–γ enzymelinked immunosorbent spot (ELISpot), using 51 SIV peptide subpools to determine cellular breadth
- SIV-specific T-cell polyfunctionality was determined by intracellular staining flow cytometry
- Env-binding and SIV-neutralizing antibodies (nAbs) were determined using enzyme-linked immunosorbent assay and cell-based luciferase reporter assays
- Anti-artLCMV vector-specific nAbs were evaluated in an image-based cellular green fluorescent protein reporter assay
- Vx efficacy was determined based on SIV VL reduction over 40 wk after iv challenge with high-dose 8.19TCID₅₀ SIVmac251

Results

Vaccination Induced SIV-Specific T-Cell Responses[†]

comparisons; [†]Responses evaluated at 2 wk after each dose; data are median ± interquartile range (IQR); n=24/group in artPICV/artLCMV and n=8/ group in Ad5/MVA; threshold for breadth ELISpot response: ≥50 SFU/10⁶ peripheral blood mononuclear cells (PBMCs) and 3-fold more than background. NP, nucleoprotein; ns, not significant; SFU, spot-forming units.

- High and comparable breadth of response was observed after artLCMV and MVA boost
- Significantly higher IFNy responses were observed to SIV immunogens over either PICV or LCMV vector-specific NP

*Sizes of pies proportional to frequency of antigen-specific CD8 T cells. IL, interleukin; MIP, macrophage inflammatory protein; TNF, tumor necrosis factor.

- Higher SIV-specific polyfunctional CD8 responses were observed after artLCMV dose 1 vs after Ad5 dosing
- MVA dose 1 induced robust CD8 polyfunctional responses

Vaccination Induced Env-Specific Binding and nAbs[†]

*p<0.05, **p<0.01, ***p<0.001: Wilcoxon signed-rank test for intragroup and Mann-Whitney test for intergroup comparisons; [†]Data plotted as geometric mean with 95% confidence interval; n=24/group in artPICV/artLCMV and n=8/group in Ad5/MVA; antibody titers at 2 wk after Vx dose 4; SIV tier 1: smE543 and smE660; tier 2: SIVmac251; and tier 3: SIVmac239. IgG, immunoglobulin G.

- Comparable binding antibody titers were observed for homologous and heterologous SIV Env following artPICV/artLCMV and Ad5/MVA vaccination
- Higher NAbs were detected against tier 1 virus (smE660) with artPICV/ artLCMV vs Ad5/MVA vectors

Generation of artLCMV Vector nAbs Did Not Interfere With Magnitude of SIV-Specific T-Cell Response[†]

- Repeat dosing with artPICV/artLCMV increased LCMV vector nAb titers
- Peak LCMV nAb titers were observed 2 wk after the 2nd artLCMV boost (Vx dose 4)
- Vector nAbs did not correlate with SIV-specific T-cell response measured by IFNy ELISpot

*p<0.05: Mann-Whitney test for comparison of vaccinated group vs placebo; [†]Data are median ± IQR; n=24/group in artPICV/artLCMV and n=8/group in Ad5/MVA; median VLs listed in graphs for peak and set-point VLs.

- Vaccination with artPICV/artLCMV and Ad5/MVA resulted in significant decreases in peak and set-point VLs vs placebo
- No significant difference in VL was observed between the 2 Vx vector platforms

In artPICV/artLCMV-vaccinated animals, presence of Gag breadth after dose 3 and tier 1 smE660 nAbs after dose 4 inversely correlated with peak SIV VL This correlation was not observed in Ad5/MVA-vaccinated animals

Conclusions

- Alternating immunization with arenavirus vectors led to significant reductions in peak and set-point VLs after SIVmac251 challenge
- Alternating immunization with arenavirus vectors induced robust SIV-specific T- and B-cell responses that were not impacted by vector-specific nAbs
- The immunologic correlates generated after vaccination, Gag breadth after dose 3, and tier 1 Env nAbs after dose 4 inversely correlated with peak SIV VL, suggesting a role for vaccinationinduced T- and B-cell responses in reducing SIV VL

References: 1. Collins DR, et al. Nat Rev 2020;20:471-82; 2. Migueles SA, et al. Nat Immunol 2002;3:1061-8; 3. Janes H, et al. J Infect Dis 2013;208:1231-9; 4. Borducchi EN, et al. Nature 2016;540:284-7 5. Barouch DH, et al. Nature 2012;482:89-93; 6. MacMaster PP, et al. Vaccine 2017;35:1-9; 7. Kallert SM, et al. Nature Commun 2017;8:15327. Acknowledgments: This study was funded by Gilead Sciences, Inc. Editing and production assistance were provided by BioScience Communications, New York, NY, funded by Gilead.