Growth of infants with perinatal exposure to maternal DTG vs EFV and TDF vs TAF: the randomized IMPAACT 2010 trial

Lynda Stranix-Chibanda for the IMPAACT 2010 protocol team and investigators

University of Zimbabwe Clinical Trials Research Centre
Harare, Zimbabwe

Disclosure: None
Growth of infants with perinatal exposure to maternal DTG vs EFV and TDF vs TAF: the randomized IMPAACT 2010 trial

Lynda Stranix-Chibanda, Lauren Ziemba, Sean Brummel, Benjamin Johnston, Tapiwa Mbengeranwa, Haseena Cassim, Gerhard Theron, Sherika Hanley, Maxensia Owor, Katie McCarthy, Nahida Chakhtoura, Patrick Jean-Philippe, Lameck Chinula, Shahin Lockman, for the IMPAACT 2010/VESTED study team and investigators

https://www.impaaactnetwork.org/studies/impaaact2010
Impact of contemporary antiretrovirals taken in pregnancy/breastfeeding on infant growth is not fully established

Stunting in infancy impacts cognitive development and adult height

Background

- Impact of contemporary antiretrovirals taken in pregnancy/breastfeeding on infant growth is not fully established
- Stunting in infancy impacts cognitive development and adult height
- We compared growth through 1 year of age in infants randomized to one of 3 maternal ART regimens started in pregnancy in the IMPAACT 2010 trial

Randomized Open-label Trial of the Virologic Efficacy and Safety of Three ART Regimens Started in Pregnancy

643 women with HIV

Key Eligibility Criteria
- Pregnant WLHIV 14-28 weeks gestation
- ART-naïve (up to 14 days ART in current pregnancy allowed)

Participants were enrolled at 22 sites in 9 countries

DTG = dolutegravir
EFV = efavirenz
TDF = tenofovir disoproxil fumarate
TAF = tenofovir alafenamide

Lockman & Brummel et al, The Lancet, 2021
Key Outcomes at Delivery/Birth

- Maternal DTG-containing ART vs EFV/FTC/TDF:
 - Superior virologic efficacy at delivery
 - Closer to expected weight gain in pregnancy
- Maternal DTG+FTC/TAF lowest composite frequency of adverse pregnancy outcome**
- Liveborn infants—similar except for weight
 - Higher proportion low birth weight <2500g EFV/FTC/TDF

**Poster 679 Brummel; Other IMPAACT 2010 posters—Fairlie; Chinula; Boyce
Additional Infant Characteristics

<table>
<thead>
<tr>
<th></th>
<th>DTG+FTC/TAF (N = 208)</th>
<th>DTG+FTC/TDF (N = 202)</th>
<th>EFV/FTC/TDF (N = 207)</th>
<th>Total (N = 617)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiated breastfeeding, n (%)</td>
<td>161 (77)</td>
<td>158 (78)</td>
<td>160 (77)</td>
<td>479 (78)</td>
</tr>
<tr>
<td>Median (Q1, Q3) breastfeeding duration (weeks)</td>
<td>50 (44, 51)</td>
<td>50 (44, 51)</td>
<td>50 (41, 51)</td>
<td>50 (43, 51)</td>
</tr>
<tr>
<td>ARV prophylaxis, n (%)</td>
<td>203 (98)</td>
<td>200 (99)</td>
<td>196 (95)</td>
<td>599 (97)</td>
</tr>
<tr>
<td>Cotrimoxazole prophylaxis, n (%)</td>
<td>179 (86)</td>
<td>174 (86)</td>
<td>169 (82)</td>
<td>522 (85)</td>
</tr>
<tr>
<td>Acquired HIV, n (%)</td>
<td>2 (1)</td>
<td>1 (0.5)</td>
<td>1 (0.5)</td>
<td>4 (0.6)</td>
</tr>
</tbody>
</table>
Inclusion Flow Chart

643 Pregnant Women Randomized

217 DTG+FTC/TAF
1 withdrew
208 livebirths
8 stillbirths
Anthropometry Available
193 Week 26
179 Week 50

215 DTG+FTC/TDF
2 withdrew
202 livebirths
11 stillbirths
Anthropometry Available
193 Week 26
176 Week 50

211 EFV/FTC/TDF
0 withdrew
207 livebirths
4 stillbirths
Anthropometry Available
188 Week 26
170 Week 50

20 infants died: DTG+FTC/TAF—2 (1%); DTG+FTC/TDF—4 (2%); EFV/FTC/TDF—14 (7%)
Infant Growth Statistical Approach

- Infant growth WHO Z-scores computed at Weeks 26 and 50 for liveborn infants retained on-study with length and weight data available:
 - Length-for-age (LAZ)
 - Weight-for-age (WAZ)
 - Weight-for-length (WHZ)

- WHO standards and software used for Z-score calculations (www.who.int/childgrowth/software/en)
Infant Growth Statistical Approach

- Infant growth WHO Z-scores computed at Weeks 26 and 50 for liveborn infants retained on-study with length and weight data available:
 - Length-for-age (LAZ)
 - Weight-for-age (WAZ)
 - Weight-for-length (WHZ)
- WHO standards and software used for Z-score calculations (www.who.int/childgrowth/software/en)
- Pairwise comparisons of mean z-scores by two-sample t-tests
- Proportion stunting (LAZ <-2) estimated
Length-for-Age Z-scores lower in EFV vs DTG arms, similar TDF- vs TAF-DTG
Weight-for-Age Z-scores lower in EFV vs DTG arms, similar TDF- vs TAF-DTG

Mean WHO Weight-for-Age Z-Score with 95% CI

Mean Differences (95% CI), p-value

-0.0 (-0.3, 0.2) p=0.78
0.3 (0.0, 0.6) p=0.0094
0.3 (0.0, 0.6) p=0.019
Weight-for-Length Z-scores, no apparent differences

Graph:
- **DTG+FTC/TAF**
- **DTG+FTC/TDF**
- **EFV/FTC/TDF**

Mean Differences (95% CI), p-value
- **DTG+FTC/TAF - DTG+FTC/TDF**
 - 0.3 (-0.1, 0.6) p=0.13
- **DTG+FTC/TDF - EFV/FTC/TDF**
 - -0.3 (-0.6, 0.1) p=0.14
- **DTG+FTC/TAF - EFV/FTC/TDF**
 - 0.0 (-0.3, 0.4) p=0.94

Study Week:
- Birth*
- Week 6
- Week 14
- Week 26
- Week 38
- Week 50

*post-hoc analysis
Limitations

- Infant follow-up limited to one year of age
- Included women who started ART in pregnancy (not women conceiving on ART)
- Predominantly breastfeeding populations studied, primarily in Africa
Conclusions

- Infants born to mothers who started EFV/FTC/TDF in pregnancy were significantly smaller throughout infancy than infants whose mothers started DTG+FTC/TAF or DTG+FTC/TDF
- Rates of stunting were high across all arms and higher in EFV arm (1 in 5) than the DTG arms (1 in 7)
- Mechanisms of this difference remain unclear
 - Potential influence of differential maternal weight gain in pregnancy
- Infant growth was similar following exposure to maternal TDF vs. TAF in combination with DTG+FTC
Conclusions

- Extended follow-up required to assess persistence of observed differences
- Infant growth should be factored into the choice of optimal maternal ART regimens during pregnancy and breastfeeding
Acknowledgements

The IMPAACT 2010/VESTED Protocol Team gratefully acknowledges the dedication and commitment of the 643 mother-infant pairs, their communities, and CAB representatives, without whom this study would not have been possible.

Sponsors: US National Institutes of Health (Patrick Jean-Philippe, Renee Browning, Lynette Purdue, Nahida Chakhtoura); Gilead Sciences, Mylan, Viiv Healthcare Ltd

Protocol Co-Chairs: Shahin Lockman and Lameck Chinula
Operations Center: Anne Coletti and Katie McCarthy

IMPAACT 2010/VESTED is funded by the US National Institutes of Health (NIH).

Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of Mental Health (NIMH), all components of the National Institutes of Health (NIH), under Award Numbers UM1AI068632 (IMPAACT LOC), UM1AI068616 (IMPAACT SDMC) and UM1AI06716 (IMPAACT LC), and by NICHD contract number HHSN27520180001I.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

The study products were provided by Viiv Healthcare Ltd, Gilead Sciences, Mylan.