Trends in mortality in people living with HIV in an international cohort (RESPOND)

Erich Tusch¹, Annegret Pelchen-Matthews², Lars Peters¹, Amanda Mocroft^{1,2}, Daniel Elbirt³, Cristiana Oprea⁴, Huldrych Günthard⁵, Cornelia Staehelin⁶, Robert Zangerle⁷, Colette Smith⁸, Isabelle Suarez⁹, Jörg Janne Vehreschild⁹, Ferdinand Wit¹⁰, Marianna Menozzi¹¹, Antonella d'Arminio Monforte¹², Vincenzo Spagnuolo¹³, Christian Pradier¹⁴, Christian Pradier¹⁴, Christian Pradier¹⁵, Paula Suanzes¹⁶, Jan-Christian Wasmuth¹⁷, Andrew Carr¹⁸, Kathy Petoumenos¹⁸, Nikoloz Chkhartishvili¹⁹, Jonathan Carney²⁰, Bastian Neesgaard¹, Nadine Jaschinski¹, Lauren Greenberg¹, Sean R Hosein²¹, Joel Gallant²², Vani Vannappagari²³, Lital Young²⁴, Jens Lundgren¹, Lene Ryom^{1,25}, Joanne Reekie¹ 1CHIP, Rigshospitalet, University of Copenhagen, Copenhagen, Copenhagen, Copenhagen, Copenhagen, Copenhagen, Copenhagen, Condon, UK; 3Allergy, Immunology and HIV Unit, Kaplan Medical Center, Rehovot, Israel; 4Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania; 5Swiss HIV Cohort Study (SHCS), University of Zurich, Switzerland; 10 Infectious and Tropical Diseases, Bucharest, Romania; 5Swiss HIV Cohort Study (SHCS), University of Zurich, Switzerland; 10 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 10 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 11 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 12 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 13 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 14 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 15 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 16 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 17 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 18 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evaluation (CREME), University of Zurich, Switzerland; 19 Infectious and Evalua ⁶Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland; Puniversity College London, United Kingdom; University Hospital Cologne, Germany; Ollege London, University Hospital Cologne, Germany; Ollege London, University College London, University Hospital Cologne, Germany; Ollege London, University Hospital Cologne, Germany; Ollege London, University College London, University Hospital Cologne, Germany; Ollege London, University Hospital Cologne, Germany; Ollege London, University College London, University Hospital Cologne, Germany; Ollege London, University College London, University Hospital Cologne, Germany; Ollege London, University Hospital Cologne, Germany; Olle Netherlands; 11 Modena HIV Cohort, Università degli Studi di Modena, Italy; 12 Italian Cohort, Università Vita-Salute San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milano, Italy; 14 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 14 Nice HIV Cohort, Università Vita-Salute San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milano, Italy; 14 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 15 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 15 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 16 Italian Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 16 Italian Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 18 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 18 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute San Raffaele, Milano, Italy; 19 Nice HIV Cohort, Università Vita-Salute Salute Sal d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 19 Georgia; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 20 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Spain; 21 Frankfurt HIV Cohort Study, Johann Universitat Autònoma de Barcelona, Bellaterra, Bellat Wolfgang Goethe-University Hospital, Frankfurt, Germany; 21 European AIDS Treatment Group (EATG), Brussels, Belgium; 22 Gilead Sciences, Foster City, California, USA; 23 ViiV Healthcare, Research Triangle Park, North Carolina, USA; 24 Merck Sharp & Dohme, Rahway, New Jersey, USA; 25 Department of Infectious Diseases 144, Hvidovre University Hospital, Copenhagen, Denmark

BACKGROUND

- Mortality rates in people living with HIV have declined due to effective antiretroviral treatment (ART) (1). Aging, coinfections, and comorbidities may drive further changes in mortality (2).
- We investigated recent patterns in mortality in the RESPOND cohort consortium to systematically monitor for unexpected trends and identify opportunities to reduce mortality.

METHODS

- The RESPOND cohort consortium was initiated in 2017 and includes over 30,000 people living with HIV from 17 cohorts across Europe and Australia.
- Prospective follow up from 2012 through 2019. Participants before 2017 enrolled retrospectively.
- Mortality classified by the Coding Causes of Death in HIV (CoDe) methodology (3).
- Age-standardized mortality rates were compared over time.
- Multivariable Poisson regression was used to investigate risk factors for all-cause mortality.

RESULTS

- 33,598 participants, 167,930 PYFU (median 4.8 years; IQR 3.1–8.0); 1700 (5.1%) died.
- Crude, all-cause mortality rate decreased over time.
- 2012–13: 13.0/1000 PYFU (95%CI 11.8–14.4)
- 2018–19: 8.6/1000 PYFU (95%CI 7.9–9.5)
- Median age at death increased over time:
- 2012–13: 52 (IQR 45–62); 2018–19: 56 (IQR 48–65)
- Highest cause-specific crude mortality rate was due to non-AIDS defining malignancy (NADM); see Table 1.
- Age-adjusted Poisson regression showed decreasing mortality from 2012–13 to 2018–19 for deaths due to NADM, AIDS, cardiovascular disease (CVD), liver disease, and other causes, but not unknown/missing (see Figure 2).
- In multivariable analysis including all risk factors where p<0.1 in univariable analysis (Figure 1), the strongest predictors of all-cause mortality were poor immunologic/virologic status (current CD4 ≤350 cells/mm³ + HIV viral load (VL) >200 cp/mL) vs. good immunologic/virologic status (CD4 ≥500 cells/mm³ + VL <200 cp/mL) and other modifiable risk factors.

In the RESPOND cohort from 2012 through 2019, cause-specific age-adjusted mortality rates declined. Immunologic/virologic status was the strongest predictor of mortality.

Figure 1. All-cause mortality univariable and multivariable time-updated Poisson regressions

Covariate	_evel	IRR (95% CI)	alRR (95% CI)	
Age (per one year)		1.05 (1.05–1.06)	1.05 (1.05–1.06)	
Time period (ref. 2012–2013)				
2014–	2015	0.84 (0.73-0.97)	0.81 (0.71-0.94)	
2016–	2017	0.71 (0.62–0.81)	0.66 (0.58-0.76)	
2018–	2019	0.66 (0.58-0.76)	0.61 (0.53-0.7)	
Race/Ethnicity (ref. White)				
non-\	Vhite	0.38 (0.31–0.46)	0.63 (0.51-0.77)	
Unkı	nown	0.63 (0.47–0.83)	0.75 (0.56-0.99)	
Prohi	bited	0.76 (0.64–0.9)	1.01 (0.84-1.21)	
Region (ref. Central West)				
Central	East	0.84 (0.65–1.06)	0.82 (0.63-1.03)	
	East	1.31 (1.08–1.56)	0.78 (0.63-0.96)	
North / Aus	tralia	0.89 (0.79–1.01)	1.07 (0.94-1.22)	
5	South	0.84 (0.74-0.96)	0.89 (0.77-1.02)	
HIV transmission risk (ref. MSM)				
Injection drug	g use	3.08 (2.73-3.47)	1.78 (1.51–2.1)	
Heterosexual co	ntact	1.11 (0.98–1.25)	1.15 (1–1.32)	
Other/unknown/missing		1.49 (1.22–1.81)	1.21 (0.98–1.47)	
CD4/HIV RNA status (ref. Good)				
Interme	diate	2.99 (2.69–3.32)	2.68 (2.4–2.98)	
	Poor	9.01 (7.74–10.46)	9.78 (8.29–11.5)	
Diabetes (ref. no diabetes)		3.51 (2.89–4.22)	1.88 (1.53–2.28)	
Chronic kidney disease (ref. no CKE))	2.64 (2.29–3.03)	1.23 (1.05-1.43)	
End-stage renal disease (ref. no ES	RD)	5.23 (3.96–6.75)	2.67 (1.99–3.5)	
Hypertension (ref. no HTN)		1.73 (1.57–1.9)	1.17 (1.04-1.31)	
Dyslipidemia (ref. no dyslipidemia)		1.57 (1.43–1.73)	1.13 (1.02-1.26)	
Cardiovascular disease (ref. no CVI))	4.2 (3.67–4.79)	1.98 (1.71–2.29)	
Hepatitis C history (ref. antibody negative)				
chronic untre	eated	3.6 (3.21–4.02)	2.12 (1.82–2.47)	
	cured	1.63 (1.38–1.92)	1.04 (0.86–1.27)	
spontaneously res	olved	2.08 (1.6–2.64)	1.28 (0.96–1.67)	
treatment fa	ailure	1.51 (1.09–2.03)	0.99 (0.7–1.35)	
End-stage liver disease (ref. no ESL	D)	10.29 (8.59–12.23)	5.08 (4.2-6.08)	
Smoking history (ref. never smoker)				
current sn	noker	2.2 (1.89–2.58)	1.97 (1.67–2.33)	
previous sn	noker	1.84 (1.54–2.19)	1.37 (1.15–1.65)	
unknown smoking h	story	0.99 (0.84–1.18)	1.03 (0.86-1.24)	

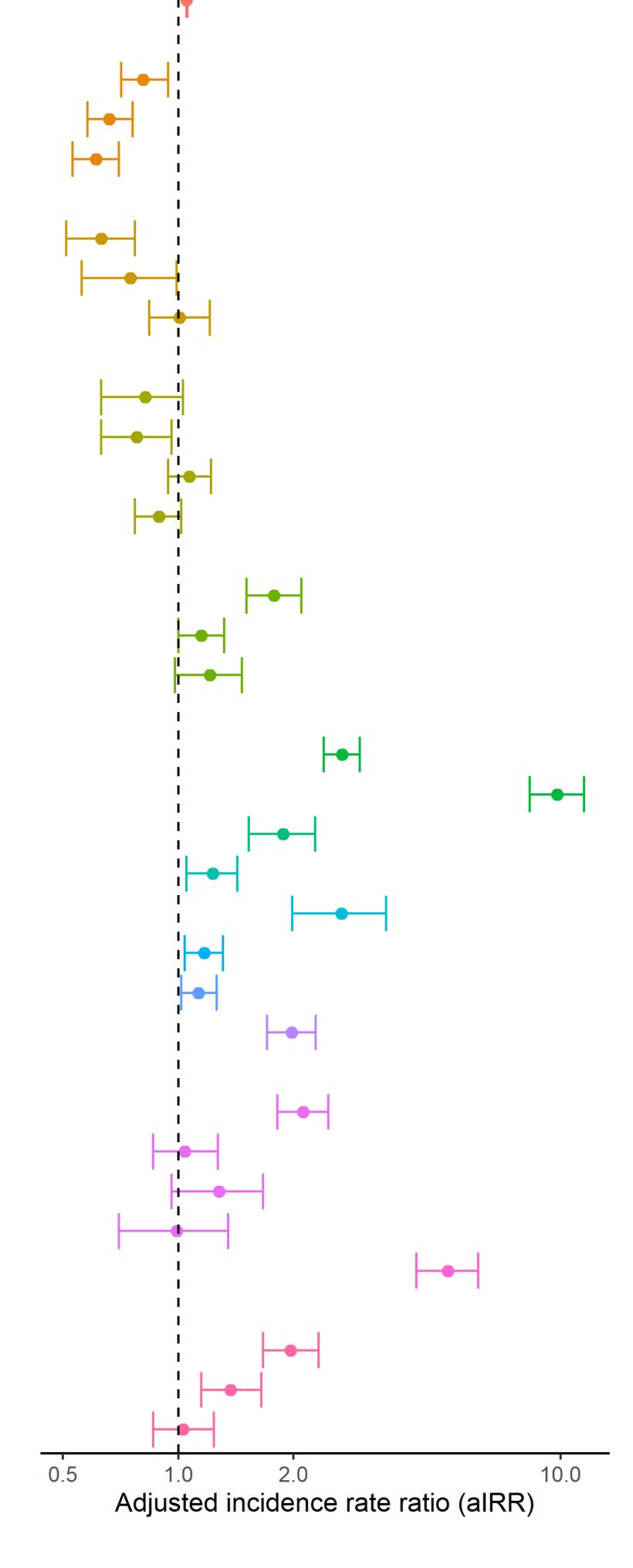
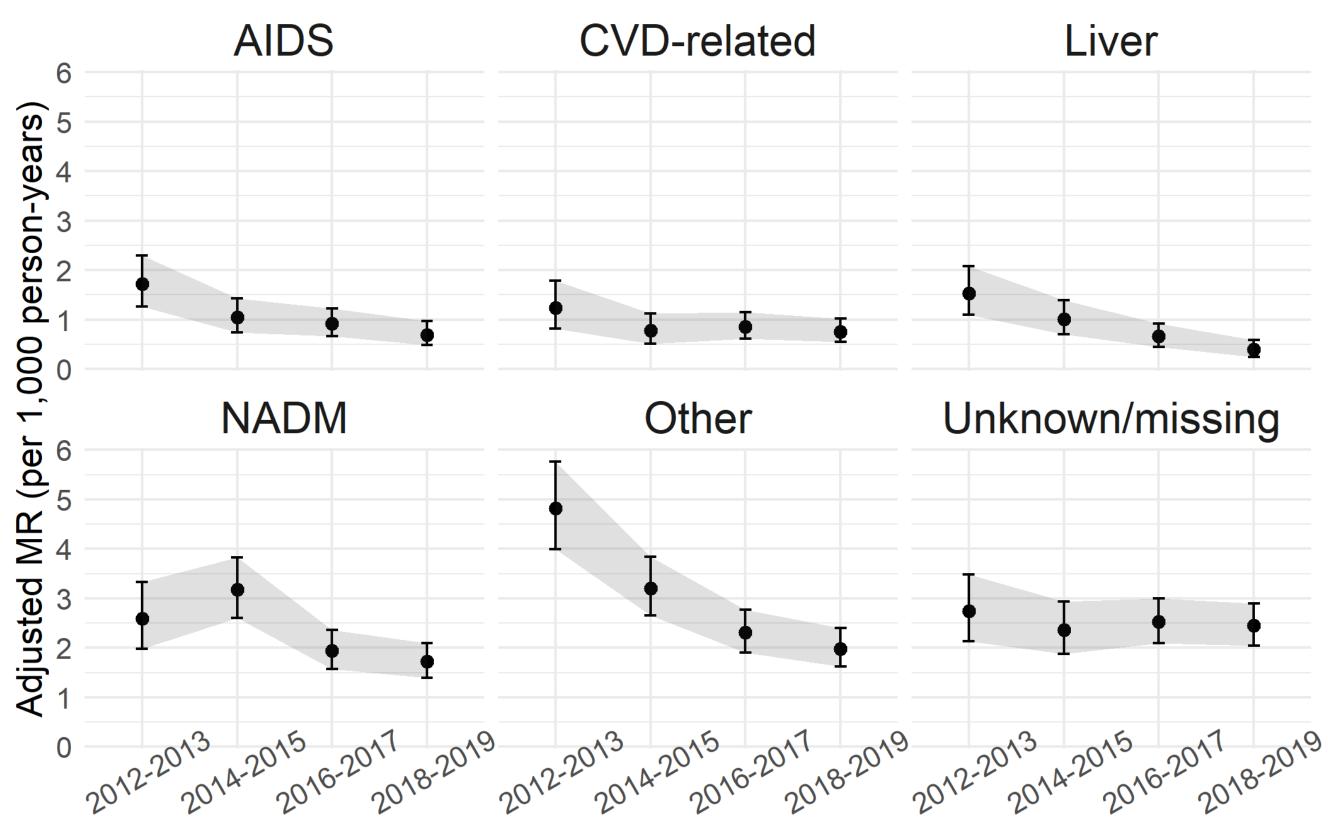



Table 1: Cause-specific crude mortality rates (MR) per 1000 person-vears

870

per recor person years			
	N events	crude MR (95%CI)	
NADM	370	2.20 (1.98 - 2.44)	
AIDS	169	1.01 (0.85 - 1.16)	
CVD	142	0.85(0.71-1.00)	
Liver	133	0.79 (0.66 - 0.94)	
Other	469	2.79 (2.55 - 3.06)	
Unknown/missing	417	2.48 (2.25 - 2.73)	

Figure 2: Age-standardized mortality rates (MR)

LIMITATIONS

- Many unknown/missing causes of death.
- Retrospective enrollment may lead to selection bias.

CONCLUSIONS

- Age-adjusted mortality rates due to specific causes declined from 2012–13 to 2018–19.
- Mortality due to NADM was greater than AIDS-, CVD-, or liver-related mortality.
- Median age at death has increased over time but is still relatively young compared to the background population.
- All-cause mortality was strongly associated with modifiable risk factors, especially immunologic/virologic status and chronic conditions, indicating areas for improvement.