

Decline in eGFR in HCV-Infected Patients While on Treatment With Sofosbuvir/Ledipasvir or PrOD Regimens Is Not Dependent on Baseline eGFR

Introduction

- Treatment with newer direct-acting antiviral (DAA) regimens against HCV demonstrates high SVR rates achieved in patients with advanced chronic kidney disease (CKD)
- There have been reports of newer DAA regimens being associated with increased and accelerated progression of kidney disease
- Renal elimination of some of these drugs may be a potential cause of toxicity, particularly among those with preexisting renal impairment
- However, progression of CKD among persons treated with DAA is still poorly understood

Aims

• To determine the proportion of persons who have a decline in renal function while being treated with 2 commonly used DAA regimens, sofosbuvir/ledipasvir (SOF/LDV) and paritaprevir/ritonavir/ombitasvir + dasabuvir (PrOD)

Methods

- We used the Electronically Retrieved Cohort of HCV Infected Veterans (ERCHIVES), a well-established national cohort of HCV-infected persons and age-, sex-, and racematched controls who received care within any of the Veterans Health Administration (VHA) healthcare facilities
- Demographic, clinical, laboratory, pharmacy, utilization, and vital status data are retrieved from VHA's Corporate Data Warehouse (CDW)
- Patients initiated on SOF/LDV or PrOD were included. We identified those with $\geq 2 \text{ eGFR } 3$ months apart and prior to baseline and ≥ 1 eGFR value ≥ 12 weeks after baseline. eGFR was estimated using the CKD-EPI equation
- HIV- and hepatitis B surface antigen-positive persons were excluded
- CKD stages were classified from stage 1 through 5 using the National Kidney Foundation criteria
- We calculated the proportion of persons who had a decline in eGFR of 10 or 30 mL/min/1.73 m² from baseline
- Mean eGFR was plotted by regimen and use of ribavirin

M. Alkadi^{1,2}; Y. Ren³; A.-B. Abou-Samra^{1,2}; <u>A. Puenpatom⁴</u>; J.M. Arduino⁴; R. Kumar⁴; A.A. Butt^{1,2,3}

¹Weill Cornell Medical College, New York, NY, USA; ²Hamad Medical Corporation, Doha, Qatar; ³VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; ⁴Merck & Co., Inc., Kenilworth, NJ, USA

Results

Table 1. Baseline characteristics										
Characteristic	SOF/LDV no RBV N = 9,837	SOF/LDV+RBV N = 3,826	<i>P</i> -value	PrOD N = 1,017	PrOD+RBV N = 2,944	<i>P</i> -value				
Age, median (IQR)	62 (58, 65)	62 (58, 65)	0.18	63 (59, 66)	62 (58, 65)	<0.01				
Race/ethnicity, %										
White	45.7	54	<0.01	37.8	47.1	<0.01				
Black	37.9	26.7		44.1	33.1					
Hispanic	2.8	4.8		3	3.4					
Other	13.6	14.5		15.1	16.4					
Sex (M), %	96.3	97.5	<0.01	97.6	97.6	0.97				
HCV RNA, log ₁₀ , median (IQR)	6.00 (4.68, 6.51)	5.85 (2.71, 6.45)	<0.01	6.01 (4.75, 6.51)	6.05 (3.41, 6.58)	0.61				
Diabetes, %	32.9	41.3	<0.01	31.4	30	0.42				
Cardiovascular disease, %	18.9	16.2	<0.01	15	13.2	0.14				
FIB-4 score, median (IQR)	2.15 (1.50, 3.33)	3.32 (2.04, 6.00)	<0.01	1.89 (1.44, 2.58)	2.35 (1.61, 3.80)	<0.01				
Cirrhosis (by FIB-4 >3.5), %	28.5	10.8	<0.01	47.3	22.9	<0.01				
eGFR, mL/min/1.73 m ² , median (IQR)	82.0 (67.4, 96.0)	84.0 (69.0, 99.0)	<0.01	82.0 (67.0, 96.4)	83.4 (71.0, 97.3)	<0.01				

Figure 1. Study flow sheet

Table 2. eGFR decline of >10 mL/min/1.73 m² by regimen and baseline eGFR

Baseline eGFR/CKD Stage (mL/min/ 1.73 m ²)	Ν	% V >	<i>P</i> - value			
		SOF/LDV No RBV	SOF/LDV +RBV	PrOD No RBV	PrOD +RBV	
eGFR <u>></u> 60	15,086	33.1	37.8	30.1	33.2	0.03
CKD stage 3 (eGFR 30-59)	2,281	16.5	15.9	17.5	14.1	0.58
CKD stages 4-5 (eGFR <30)	257	6.5	3.3	1.8	0	0.03

Contact Information: Adeel A. Butt Building 30, Mailstop 151; University Drive C, Pittsburgh, PA 15240 Email: aabutt@pitt.edu

Results (continued)

Conclusions

- Over one third of persons treated with SOF/LDV or **PrOD** regimens experienced a decline in eGFR of >10 mL/min (range from 37.8% (SOF/LDV+RBV) to 30.1% (PrOD, no RBV))
- For stage 4-5 CKD, higher incidence of eGFR decline was observed among patients treated with SOF/LDV (6.5%), followed by SOF/LDV+RBV (3.3%) and **PrOD (1.8%)**
- Whether these declines are permanent or of any clinical significance is not known
- Number of persons with baseline CKD stage 4-5 was small, and caution should be exerted in interpreting these data for this group

References

- Flisiak R, Janczewska E, Wawrzynowicz-Syczewska M, et al. Real-world effectiveness and safety of ombitasvir/paritaprevil ritonavir ± dasabuvir ± ribavirin in hepatitis C: AMBER study. Aliment Pharmacol Ther. 2016;44(9):946-956.
- · Li T, Qu Y, Guo Y, Wang Y, Wang L. Efficacy and safety of direct-acting antivirals-based antiviral therapies for hepatitis C virus patients with stage 4-5 chronic kidney disease: a meta-analysis. Liver Int. 2016.
- Dumortier J, Bailly F, Pageaux GP, et al. Sofosbuvir-based antiviral therapy in hepatitis C virus patients with severe renal failure
- Pockros PJ, Reddy KR, Mantry PS, et al. Efficacy of direct-acting antiviral combination for patients with hepatitis C virus
- genotype 1 infection and severe renal impairment or end-stage renal disease. *Gastroenterology.* 2016;150(7):1590-1598. Butt AA, Ren Y, Marks K, Shaikh OS, Sherman KE; ERCHIVES study. Do directly acting antiviral agents for HCV increase the risk of hepatic decompensation and decline in renal function? Results from ERCHIVES. Aliment Pharmacol Ther.
- 2017:45(1):150-159. Saxena V, Koraishy FM, Sise ME, et al. Safety and efficacy of sofosbuvir-containing regimens in hepatitis C-infected patients with

impaired renal function. Liver Int. 2016;36(6):807-816.

This study was funded by Merck & Co., Inc., Kenilworth, NJ, USA

